Skip to main content
Log in

Experimental study on dynamic mechanism of vortex evolution in a turbulent boundary layer of low Reynolds number

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ =97–194 is experimentally investigated. In this study, a moving single-frame and long-exposure (MSFLE) imaging method and a moving particle image velocimetry/particle tracing velocimetry (M-PIV/PTV) are designed and implemented for measuring the temporal and spatial evolution of vortex cores in both qualitative and quantitative ways, respectively. On the other hand, the Liutex vector, which is a new mathematical definition and identification of the vortex core proposed by Liu’s group, is first applied in the experiment for the structural visualization and quantitative analysis of the local fluid rotation. The results show that an intuitional process of vortex evolution can be clearly observed by tracking the vortex using MSFLE and verify that the roll-up of the shear layer induced by shear instability is the origin of vortex formation in turbulence. Furthermore, a quantitative investigation in terms of the critical vortex core boundary (size) and its accurate rotation strength is carried out based on the Liutex vector field analysis by M-PIV/PTV. According to statistics of the relation between vortex core size and the rotation strength during the whole process, the phy sical mechanism of vortex generation and evolution in a turbulent boundary layer of low Reynolds number can be summarized as a four-dominant-state course consisting of the “synchronous linear segment (SL)-absolute enhancement segment (AE)-absolute diffusion segment (AD)-skewing dissipation segment (SD)”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malik M. R. Prediction and control of transition in supersonic and hypersonic boundary layers [J]. AIAA Journal, 1989, 27(11): 1487–1493.

    Article  Google Scholar 

  2. Theodorsen T. Mechanism of turbulence [C]. Proceeding of 2nd Midwestern Conference on Fluid Mechanics, Columbus, USA, 1952.

  3. Kline S. J., Reynolds W. C., Schraub F. A. et al. The structure of turbulent boundary layers [J]. Journal of Fluid Mechanics, 1967, 30(4): 741–773.

    Article  Google Scholar 

  4. Lozano-Durán A., Jiménez J. Time-resolved evolution of coherent structures in turbulent channels: Characterization of eddies and cascades [J]. Journal of Fluid Mechanics, 2014, 759: 432–471.

    Article  MathSciNet  Google Scholar 

  5. del ÁLamo J. C., Jiménez J., Zandonade P. et al. Self-similar vortex clusters in the turbulent logarithmic region [J]. Journal of Fluid Mechanics, 2006, 561: 329–358.

    Article  Google Scholar 

  6. Robinson S. K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601–639.

    Article  Google Scholar 

  7. Stanislas M. Near wall turbulence: An experimental view [J]. Physical Review Fluids, 2017, 2(10): 100506.

    Article  MathSciNet  Google Scholar 

  8. Galmiche B., Mazellier N., Halter F. et al. Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements [J]. Experiments in Fluids, 2013, 55(1): 1636.

    Article  Google Scholar 

  9. Dore V., Moroni M., Le Menach M. et al. Investigation of penetrative convection in stratified fluids through 3D-PTV [J]. Experiments in Fluids, 2009, 47(4–5): 811.

    Article  Google Scholar 

  10. Hutchins N., Hambleton W. T., Marusic I. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers [J]. Journal of Fluid Mechanics, 2005, 541: 21–54.

    Article  Google Scholar 

  11. Dennis D. J. C., Nickels T. B. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets [J]. Journal of Fluid Mechanics, 2011, 673: 180–217.

    Article  Google Scholar 

  12. Elsinga G. E., Adrian R. J., Van Oudheusden B. W. et al. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer [J]. Journal of Fluid Mechanics, 2010, 644: 35–60.

    Article  Google Scholar 

  13. Yang B., Xiang Y., Cai X. S. et al. Simultaneous measurements of fine and coarse droplets of wet steam in a 330 MW steam turbine by using imaging method [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2017, 231(3): 161–172.

    Google Scholar 

  14. Soria J. Three-component three-dimensional (3C–3D) fluid flow velocimetry for flow turbulence investigations [C]. 21st Australasian Fluid Mechanics Conference, Adelaide, Australia, 2018.

  15. Gao Q., Ortiz-Dueñas C., Longmire E. Evolution of coherent structures in turbulent boundary layers based on moving tomographic PIV [J]. Experiments in Fluids, 2013, 54(12): 1–16.

    Article  Google Scholar 

  16. Jiang D., Zhang H., Fan B., et al. Vortex structures and drag reduction in turbulent channel flow with the effect of space-dependent electromagnetic force [J]. Ocean Engineering, 2019, 176: 74–83.

    Article  Google Scholar 

  17. Cantwell B. J. Organized motion in turbulent flow [J]. Annual Review of Fluid Mechanics, 1981, 13: 457–515.

    Article  Google Scholar 

  18. Marusic I., McKeon B. J., Monkewitz P. A. et al. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues [J]. Physics of Fluids, 2010, 22(6): 065103.

    Article  Google Scholar 

  19. Schoppa W., Hussain F. Coherent structure generation in near-wall turbulence [J]. Journal of Fluid Mechanics, 2002, 453: 57–108.

    Article  MathSciNet  Google Scholar 

  20. Smith C., Walker J. Sustaining mechanisms of turbulent boundary layers-The role of vortex development and interactions [C] 29th AIAA, Fluid Dynamics Conference, Albuquerque, USA, 1998.

  21. Hanratty T. J., Papavassiliou D. V. Role of wall vortices in producing turbulence (Panton R. L. Self-sustaining mechanisms of wall turbulence) [M]. New York, USA: Springer, 1997, 83–108.

    Google Scholar 

  22. Liu C., Cai X. S. New theory on turbulence generation and structure-DNS and experiment [J]. Science China Physics, Mechanics and Astronomy, 2017, 60(8): 084731.

    Article  Google Scholar 

  23. Zhou J., Adrian R. J., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    Article  MathSciNet  Google Scholar 

  24. Adrian R. J., Meinhart C. D., Tomkins C. D. Vortex organization in the outer region of the turbulent boundary layer [J]. Journal of Fluid Mechanics, 2000, 422: 1–54.

    Article  MathSciNet  Google Scholar 

  25. Adrian R. J. Hairpin vortex organization in wall turbulence [J]. Physics of Fluids, 2007, 19: 041301.

    Article  Google Scholar 

  26. Jodai Y., Elsinga G. E. Experimental observation of hairpin auto-generation events in a turbulent boundary layer [J]. Journal of Fluid Mechanics, 2016, 795: 611–633.

    Article  MathSciNet  Google Scholar 

  27. Yan Y., Chen C., Fu H. et al. DNS study on Λ-vortex and vortex ring formation in flow transition at Mach number 0.5 [J]. Journal of Turbulence, 2014, 15(1): 1–21.

    Article  Google Scholar 

  28. Wu X., Moin P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer [J]. Journal of Fluid Mechanics, 2009, 630: 5–41.

    Article  MathSciNet  Google Scholar 

  29. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  30. Liu C., Gao Y., Tian, S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  31. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  32. Wang Y. Q., Gao Y. S., Liu J. M. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition [J]. Journal of Hydrodynamics, 2019, 31(3): 464–474.

    Article  Google Scholar 

  33. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  34. Liu C., Yan Y., Lu P. Physics of turbulence generation and sustenance in a boundary layer [J]. Computers and Fluids, 2014, 102: 353–384.

    Article  Google Scholar 

  35. Dong X., Dong G., Liu C. Study on vorticity structures in late flow transition [J]. Physics of Fluids, 2018, 30(10): 104108.

    Article  Google Scholar 

  36. Sun Z. Micro ramps in supersonic turbulent boundary layers: An experimental and numerical study [D]. Doctoral Thesis, Delft, The Netherlands: Technische Universiteit Delft, 2014.

  37. Schlichting H., Gersten K. Boundary layer theory [M]. 8th Revised and Enlarged Edition, Berlin, German: Springer, 2010.

    MATH  Google Scholar 

  38. Robinson S. K. A review of vortex structures and associated coherent motions in turbulent boundary layers [C]. IUTAM Symposium, Zurich, Switzerland, 1989.

  39. Robinson S. K., Kline S. J., Spalart P. R. Quasi-coherent structures in the turbulent boundary layer. II-Verification and new information from a numerically simulated flat-plate layer [C]. Seminar on Near-Wall Turbulence, New York, USA, 1990.

Download references

Acknowledgment

This work is partly accomplished by using Liutex, developed by Dr. Chaoqun Liu at the University of Texas at Arlington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-shu Cai.

Additional information

Project supported by the National Natural Science Foundation of China (Grants Nos. 51906154, 51576130), the National Science and Technology Major Project (Grant No. 2017-V-0016-0069).

Biography

Yan-ang Guo (1993-), Male, Master, E-mail: yanangguo00@163.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Ya., Dong, Xr., Cai, Xs. et al. Experimental study on dynamic mechanism of vortex evolution in a turbulent boundary layer of low Reynolds number. J Hydrodyn 32, 807–819 (2020). https://doi.org/10.1007/s42241-020-0056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0056-7

Key words

Navigation