Skip to main content
Log in

Treatment of gold ore cyanidation wastewater by adsorption onto a Hydrotalcite-type anionic clay as a novel adsorbent

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The treatment of cyanide contaminated wastewater from a gold processing plant was performed by the synthesized nanostructured Layered Double Hydroxide (LDH) which has known as a Hydrotalcite-type anionic clay. LDH was synthesized by the co-precipitation process, characterized by X-ray fluorescence (XRF), X-ray powder diffraction (XRD), scanning electron microscope (SEM) Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR) and Wavelength Dispersive X-ray analysis (WDX) and applied for removal of free cyanide from both synthetic solution and mining effluent. The maximum particle size of synthesized LDH was determined to be 4 nm based on the Scherrer’s equation. The maximum loading capacity of LDH, 60 mg/g, indicates that LDH is an interesting adsorbent for cyanide removal. The data modeling showed that the kinetic and equilibrium data best fitted by FPKM and RPIM, respectively, also, rate-controlling step in the adsorption process is intra-particle diffusion based on Weber–Morris plot, and the adsorption of CN onto LDH is a two-step process. The thermodynamic studies confirm that the adsorption of free cyanide on Mg/Al LDH is a spontaneous and endothermic process. The energy of activation for adsorption of free cyanide on Mg/Al LDH was determined to be 6.14 kJ/mol, which is in the range physicochemical sorption. The mining wastewater treatment was performed by the synthesized LDH. The adsorption experiments showed that more than 90% of free cyanide was removed from the real solution during a short period of contact time, which confirms the ability of LDH for the treatment of industrial cyanide contaminated wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

EPA:

Environmental Protection Agency.

LDH:

Layered Double Hydroxide.

XRD:

X-Ray Diffraction.

XRF:

X-Ray Fluorescence.

SEM:

Scanning Electron Microscopy.

WDX:

Wave length dispersive X-ray.

FTIR:

Fourier transform infrared.

BET:

Brunauer-Emmett-Teller.

BJH:

Barrett–Joyner– Halenda.

MPSD:

Marquardt’s percent standard deviation.

ARE:

Average Relative Error.

R2 :

Correlation coefficient.

LAIM:

Langmuir Isotherm Model.

FRIM:

Freundlich Isotherm Model.

TEIM:

Temkin Isotherm Model.

RPIM:

Redlich–Peterson Isotherm Model.

KCIM:

Koble–Corrigan Isotherm Model.

ELKM:

Elovich Kinetic Model.

FPKM:

Fractional Power Kinetic Model.

PFOKM:

Pseudo-First Order Kinetic Model.

PSOKM:

Pseudo-Second Order Kinetic Model.

WMIDM:

Weber and Morris Intaparticle Diffusion Model.

qe :

The adsorbed cyanide after equilibrium (mg/g).

qt :

The adsorbed cyanide at time t (mg/g).

D:

Mean crystallite size (nm),

K:

A constant value (usually 0.9, but varies based on the crystallite shape),

λ:

X-ray wavelength (0.154 nm for Ka Cu),

θ:

Bragg’s angle in degrees,

β:

Full width at half maximum of a diffraction peak.

C0 :

Initial CN concentration (mg/L),

Ce :

CN concentration after equilibrium (mg/L).

Ct :

CN concentration at time t (mg/L).

V:

Solution volume (L).

W:

Adsorbent mass (g).

qexp :

Experimental amount of CN adsorbed on the Mg/Al LDH (mg/g).

qcal :

Calculated amount of CN adsorbed on the Mg/Al LDH (mg/g).

N:

Number of data point.

p:

Number of model parameters.

T:

Absolute temperature (K).

R:

Ideal gas constant (8.314 J mol−1 K−1).

k1 :

PSOKM Type (I) rate constant (g mg−1 h−1).

A:

Temperature-independent factor (min−1).

Ea :

Adsorption activation energy (kJ mol−1).

References

  1. Plymale A, Wells J, Graham E, Qafoku O, Brooks S, Lee B. Bacterial productivity in a Ferrocyanide-contaminated aquifer at a nuclear waste site. Water. 2018;10(8):1072.

    Article  Google Scholar 

  2. Alaei R, Javanshir S, Behnamfard A. The study of the removal conditions of free cyanide from wastewaters by layered double hydroxide through experimental design technique, kinetic and equilibrium studies. Iranian Journal of Mining Engineering. 2019;14(42):103–20.

    Google Scholar 

  3. Bazrafshan ESM, Mostafapour FK, Kamani H, Balarak D. Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: kinetic and thermodynamicstudies. Global NEST Journal. 2017;19(2):269–77.

    Article  CAS  Google Scholar 

  4. Khodadad A, Teimoury P, Abdolahi M, Samiee A. Detoxification of Cyanide in a Gold Processing Plant Tailings Water Using Calcium and Sodium Hypochlorite. Mine Water and the Environment. 2008;27(2):127. https://doi.org/10.1007/s10230-008-0042-8.

    Article  CAS  Google Scholar 

  5. Lito PF, Aniceto JPS, Silva CM. Removal of anionic pollutants from waters and wastewaters and materials perspective for their selective sorption. Water Air Soil Pollut. 2012;223(9):6133–55. https://doi.org/10.1007/s11270-012-1346-7.

    Article  CAS  Google Scholar 

  6. Mirizadeh S, Yaghmaei S, Ghobadi NZ. Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM). J Environ Health Sci Eng. 2014;12(1):85. https://doi.org/10.1186/2052-336X-12-85.

    Article  CAS  Google Scholar 

  7. Ojaghi A, Shafaie Tonkaboni SZ, Shariati P, Doulati AF. Novel cyanide electro-biodegradation using Bacillus pumilus ATCC 7061 in aqueous solution. J Environ Health Sci Eng. 2018;16(2):99–108. https://doi.org/10.1007/s40201-018-0289-3.

    Article  CAS  Google Scholar 

  8. Behnamfard A, Salarirad MM. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J Hazard Mater. 2009;170(1):127–33. https://doi.org/10.1016/j.jhazmat.2009.04.124.

    Article  CAS  Google Scholar 

  9. Stavropoulos G, Papadopoulou M, Papadimitriou K. A kinetic and thermodynamic study of cyanide adsorption in activated carbon. Desalin Water Treat. 2016;57(46):21939–43.

    Article  CAS  Google Scholar 

  10. Farrokhi M, Yang J-K, Lee S-M, Shirzad-Siboni M. Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. J Environ Health Sci Eng. 2013;11(1):23. https://doi.org/10.1186/2052-336X-11-23.

    Article  CAS  Google Scholar 

  11. Ramavandi B. Adsorption potential of NH4Br-soaked activated carbon for cyanide removal from wastewater. Indian Journal of Chemical Technology (IJCT) 2015;22 (5).

  12. Zhang Y, Wang Q, Tian X. Effect of lanthanum-doped amount on photocatalytic activity of TiO2/bentonite in cyanide waste water. International Journal of Environmental Engineering. 2016;8(2–3):139–47.

    Article  Google Scholar 

  13. Uppal H, Tripathy SS, Chawla S, Sharma B, Dalai M, Singh S et al. (2016) Study of cyanide removal from contaminated water using zinc peroxide nanomaterial. Journal of Environmental Sciences

  14. Santos RMM, Tronto J, Briois V, Santilli CV. Thermal decomposition and recovery properties of ZnAl-CO 3 layered double hydroxide for for anionic dye adsorption: insight of the aggregative nucleation and growth mechanism of LDH memory effect. J Mater Chem A. 2017;5:9998–10009.

    Article  CAS  Google Scholar 

  15. Douglas GB, Wendling LA, Pleysier R, Trefry MG. Hydrotalcite formation for contaminant removal from ranger mine process water. Mine Water Environ. 2010;29(2):108–15. https://doi.org/10.1007/s10230-010-0106-4.

    Article  CAS  Google Scholar 

  16. Lu H, Liu S, Zhang H, Qiu Y, Zhao J, Zhu Z. Decontamination of arsenic in actual water samples by calcium containing layered double hydroxides from a convenient synthesis method. Water. 2018;10(9):1150.

    Article  Google Scholar 

  17. Yu S, Wang X, Chen Z, Wang J, Wang S, Hayat T, et al. Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. J Hazard Mater. 2017;321:111–20.

    Article  CAS  Google Scholar 

  18. Hur H, Reeder RJ. (2017) Formation of CoAl layered double hydroxide on the boehmite surface and its role in tungstate sorption. Journal of Environmental Sciences.

  19. Rahman MT, Kameda T, Kumagai S, Yoshioka T. Effectiveness of mg–Al-layered double hydroxide for heavy metal removal from mine wastewater and sludge volume reduction. Int J Environ Sci Technol. 2018;15(2):263–72. https://doi.org/10.1007/s13762-017-1385-0.

    Article  CAS  Google Scholar 

  20. Barka N, Mahjoubi FZ, Khalidi A, Abdennouri M. (2017) Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: synthesis, characterisation and dye removal properties

  21. Shen L, Jiang X, Chen Z, Fu D, Li Q, Ouyang T, et al. Chemical reactive features of novel amino acids intercalated layered double hydroxides in as (III) and as (V) adsorption. Chemosphere. 2017;176:57–66.

    Article  CAS  Google Scholar 

  22. Yap P-S, Lim T-T, Goh K-H. (2017) Efficient removal of Cr (VI) from water using layer double hydroxides. Environmental Conservation, Clean Water, Air & Soil (CleanWAS):146.

  23. Constantino LV, Quirino JN, Monteiro AM, Abrão T, Parreira PS, Urbano A et al. (2017) Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere

  24. Yang Q, Zhong Y, Li X, Li X, Luo K, Wu X, et al. Adsorption-coupled reduction of bromate by Fe(II)–Al(III) layered double hydroxide in fixed-bed column: experimental and breakthrough curves analysis. J Ind Eng Chem. 2015;28:54–9. https://doi.org/10.1016/j.jiec.2015.01.022.

    Article  CAS  Google Scholar 

  25. Kameda T, Kondo E, Yoshioka T. Equilibrium and kinetics studies on as(V) and Sb(V) removal by Fe2+−doped mg–Al layered double hydroxides. J Environ Manag. 2015;151:303–9. https://doi.org/10.1016/j.jenvman.2014.12.050.

    Article  CAS  Google Scholar 

  26. Sun Z, Park J-S, Kim D, Shin C-H, Zhang W, Wang R, et al. Synthesis and Adsorption Properties of Ca-Al Layered Double Hydroxides for the Removal of Aqueous Fluoride. Water, Air, & Soil Pollution. 2016;228(1):23. https://doi.org/10.1007/s11270-016-3160-0.

    Article  CAS  Google Scholar 

  27. Wan S, Wang S, Li Y, Gao B. Functionalizing biochar with mg–Al and mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. J Ind Eng Chem. 2017;47:246–53.

    Article  CAS  Google Scholar 

  28. Molano-Mendoza M, Donneys-Victoria D, Marriaga-Cabrales N, Mueses MA, Li Puma G, Machuca-Martínez F. Synthesis of mg-Al layered double hydroxides by electrocoagulation. MethodsX. 2018;5:915–23. https://doi.org/10.1016/j.mex.2018.07.019.

    Article  Google Scholar 

  29. Isaacs-Paez ED, Leyva-Ramos R, Jacobo-Azuara A, Martinez-Rosales JM, Flores-Cano JV. Adsorption of boron on calcined AlMg layered double hydroxide from aqueous solutions. Mechanism and effect of operating conditions. Chem Eng J. 2014;245:248–57. https://doi.org/10.1016/j.cej.2014.02.031.

    Article  CAS  Google Scholar 

  30. Theiss FL, Ayoko GA, Frost RL. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl Surf Sci. 2016;383:200–13.

    Article  CAS  Google Scholar 

  31. Sun M, Zhang P, Wu D, Frost RL. Novel approach to fabricate organo-LDH hybrid by the intercalation of sodium hexadecyl sulfate into tricalcium aluminate. Appl Clay Sci. 2017;140:25–30.

    Article  CAS  Google Scholar 

  32. Rengaraj S, Yeon J-W, Kim Y, Jung Y, Ha Y-K, Kim W-H. Adsorption characteristics of cu (II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis. J Hazard Mater. 2007;143(1):469–77.

    Article  CAS  Google Scholar 

  33. Ji H, Wu W, Li F, Yu X, Fu J, Jia L. Enhanced adsorption of bromate from aqueous solutions on ordered Mesoporous mg-Al layered double hydroxides (LDHs). J Hazard Mater. 2017;334:212–22.

    Article  CAS  Google Scholar 

  34. Thommes M. Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik. 2010;82(7):1059–73.

    Article  CAS  Google Scholar 

  35. Eletta OAA, Ajayi OA, Ogunleye OO, Akpan IC. Adsorption of cyanide from aqueous solution using calcinated eggshells: equilibrium and optimisation studies. Journal of Environmental Chemical Engineering. 2016;4(1):1367–75. https://doi.org/10.1016/j.jece.2016.01.020.

    Article  CAS  Google Scholar 

  36. Konggidinata MI, Chao B, Lian Q, Subramaniam R, Zappi M, Gang DD. Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto ordered Mesoporous carbon (OMC). J Hazard Mater. 2017;336:249–59. https://doi.org/10.1016/j.jhazmat.2017.04.073.

    Article  CAS  Google Scholar 

  37. Safari GH, Zarrabi M, Hoseini M, Kamani H, Jaafari J, Mahvi AH. Trends of natural and acid-engineered pumice onto phosphorus ions in aquatic environment: adsorbent preparation, characterization, and kinetic and equilibrium modeling. Desalin Water Treat. 2015;54(11):3031–43. https://doi.org/10.1080/19443994.2014.915385.

    Article  CAS  Google Scholar 

  38. Wang H, Wang X, Ma J, Xia P, Zhao J. Removal of cadmium (II) from aqueous solution: a comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater. J Hazard Mater. 2017;329:66–76.

    Article  CAS  Google Scholar 

  39. Reguyal F, Sarmah AK, Gao W. Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl 2 for the removal sulfamethoxazole from aqueous solution. J Hazard Mater. 2017;321:868–78.

    Article  CAS  Google Scholar 

  40. Abdel-Ghani N, Rawash E, El-Chaghaby G. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon. Global Journal of Environmental Science and Management. 2016;2(1):11–8.

    CAS  Google Scholar 

  41. Praveen P, Loh K-C. Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor. Bioresour Technol. 2016;206:180–7. https://doi.org/10.1016/j.biortech.2016.01.102.

    Article  CAS  Google Scholar 

  42. Dehghani MH, Faraji M, Mohammadi A, Kamani H. Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: isotherm, kinetic and thermodynamic studies. Korean J Chem Eng. 2017;34(2):454–62. https://doi.org/10.1007/s11814-016-0274-4.

    Article  CAS  Google Scholar 

  43. Kara A, Demirbel E, Tekin N, Osman B, Beşirli N. Magnetic vinylphenyl boronic acid microparticles for Cr (VI) adsorption: kinetic, isotherm and thermodynamic studies. J Hazard Mater. 2015;286:612–23.

    Article  CAS  Google Scholar 

  44. Mustafa M, Khan JA, Hayat T, Alsaedi A. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int J Heat Mass Transf. 2017;108:1340–6.

    Article  CAS  Google Scholar 

  45. Doğan M, Abak H, Alkan M. Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater. 2009;164(1):172–81.

    Article  Google Scholar 

Download references

Acknowledgments

This work was a part of the MSc thesis of Rasool Alaei (first author), a student of the University of Birjand. The authors are grateful to the Head, Department of mineral processing for providing all the necessary facilities and grants to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Javanshir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaei, R., Javanshir, S. & Behnamfard, A. Treatment of gold ore cyanidation wastewater by adsorption onto a Hydrotalcite-type anionic clay as a novel adsorbent. J Environ Health Sci Engineer 18, 779–791 (2020). https://doi.org/10.1007/s40201-020-00503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00503-x

Keywords

Navigation