Skip to main content
Log in

Role of the solvent medium in the wet-chemical synthesis of CuSbS2, Cu3SbS3, and bismuth substituted Cu3SbS3

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Co-thermal decompositions of equimolar concentrations of thiourea complexes ([Cu(tu)3]Cl and [Sb(tu)2]Cl3) in ethylene glycol and ethanolamine were attempted. Based on the results from powder X-ray diffraction, Raman spectroscopy, and energy dispersive spectral analysis of the products, Cu3SbS3 in cubic symmetry emerged from ethylene glycol. In contrast, orthorhombic CuSbS2 resulted from the ethanolamine medium. The generation of copper-rich and copper-poor sulfides was found to be the major reason behind the formation of these stoichiometries of the Cu-Sb-S system as verified by reacting the preformed Cu-S and Sb-S species in ethanolamine and ethylene glycol. Attempts to include bismuth (up to 50 mol%) for antimony were successful only in ethylene glycol medium. The inclusion of bismuth stabilized the orthorhombic form of Cu3SbS3, possibly due to the non-bonded lone pairs present on Bi3+ and Sb3+-ions. The inclusion of bismuth confirmed from the successful refinement of powder X-ray diffraction pattern by the Rietveld method, Raman spectroscopy, and energy dispersive spectroscopy analysis. CuSbS2, Cu3SbS3 (cubic) and Cu3Sb0.50Bi0.50S3 showed broad absorption extending up to visible region in their UV-visible spectra. The bandgap values of 1.31, 1.40 and 0.94 eV were estimated by Tauc plots for Cu3SbS3, CuSbS2, and Cu3Sb0.50Bi0.50S3, respectively.

Graphic abstract

CuSbS2, Cu3SbS3 (cubic) and Cu3Sb0.50Bi0.50S3 showed broad absorption extending up to visible region in their UV-visible spectra. The bandgap values of 1.31, 1.40 and 0.94 eV were estimated by Tauc plots for Cu3SbS3, CuSbS2, and Cu3Sb0.50Bi0.50S3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Welch A W, Baranowski L L, Zawadzki P, De Hart C, Johnston S, Lany S, Wolden C A and Zakutayev A 2016 Accelerated development of CuSbS2 thin-film photovoltaic device prototypes Prog. Photovolt. Res. Appl. 24 929

    CAS  Google Scholar 

  2. Gudelli V K, Kanchana V, Vaitheeswaran G, Svane A and Christensen N E 2013 Thermoelectric properties of chalcopyrite type CuGaTe2 and chalcostibite CuSbS2 J. Appl. Phys. 114 223707

    Google Scholar 

  3. Ramasamy K, Gupta R K, Sims H, Palchoudhury S, Ivanov S and Gupta A 2015 Layered ternary sulfide CuSbS2 nanoplates for flexible solid-state supercapacitors J. Mater. Chem. A 3 13263

    CAS  Google Scholar 

  4. Choi Y C, Yeom E J, Ahn T K and IlSeok S 2015 CuSbS2-sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution Angew. Chem. Int. Ed. 54 4005

    CAS  Google Scholar 

  5. Marino C, Block T, Pottgen R and Villevieille C 2017 CuSbS2 as a negative electrode material for sodium-ion batteries J. Power Sources 342 616

    CAS  Google Scholar 

  6. Skinner B J, Luce F D and Makovicky E 1972 Studies of the sulfosalts of copper III; Phases and phase relations in the system Cu-Sb-S Econ. Geol. 67 924

    CAS  Google Scholar 

  7. Bryndzia L T and Kleppa O J 1988 High-temperature reaction calorimetry of solid and liquid phases in part of the quasi-binary system Cu2S-Sb2S3 Am. Mineral. 73 707

    CAS  Google Scholar 

  8. Ramasamy K, Sims H, Butler W H and Gupta A 2014 Selective nanocrystal synthesis and calculated electronic structure of all four phases of copper-antimony-sulfide Chem. Mater. 26 2891

    CAS  Google Scholar 

  9. Kyono A and Kimata M 2005 Crystal structures of chalcostibite (CuSbS2) emplectite (CuBiS2): Structural relationship of stereochemical activity between chalcostibite and emplectite Am. Mineral. 90 162

    CAS  Google Scholar 

  10. Whitfield H J 1980 Polymorphism in skinnerite Solid State Commun. 33 747

    CAS  Google Scholar 

  11. Pfitzner A 1998 Disorder of Cu+ in Cu3SbS3: Structural investigations of the high- and low-temperature modification Z. Kristallogr. 213 228

    CAS  Google Scholar 

  12. C N R Rao, H C Mult, A Müller and A K Cheetham 2007 (Eds.) Nanomaterials chemistry: Recent developments and new directions (Wiley‐VCH Verlag GmbH & Co.)

    Google Scholar 

  13. Rodriguez R, Hendricks M P, Cossairt B, Liu H and Owen J S 2013 Conversion reactions of cadmium chalcogenide nanocrystal precursors Chem. Mater. 25 1233

    Google Scholar 

  14. Mourdikoudis S and Liz-Marzan L M 2013 Oleylamine in nanoparticle synthesis Chem. Mater. 25 1465

    CAS  Google Scholar 

  15. Jun YW, Choi J S and Cheon J 2006 Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes Angew. Chem. Int. Ed. 45 3414

    CAS  Google Scholar 

  16. Ramasamy K, Sims H, Butler W H and Gupta A 2014 Mono-, Few-, and multiple layers of copper antimony sulfide (CuSbS2): A ternary layered sulfide J. Am. Chem. Soc. 136 1587

    CAS  PubMed  Google Scholar 

  17. Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D and Tang J 2014 CuSbS2 as a promising earth-abundant photovoltaic absorber material: A combined theoretical and experimental study Chem. Mater. 26 3135

    CAS  Google Scholar 

  18. Liang Q, Huang K, Ren X, Zhang W, Xie R and Feng S 2016 Synthesis of Cu-Sb-S nanocrystals: Insight into the mechanism of composition and crystal phase selection CrystEngComm 18 3703

    CAS  Google Scholar 

  19. Zou Y and Jiang J 2014 Colloidal synthesis of chalcostibite copper antimony sulfide nanocrystals Mater. Lett. 123 66

    CAS  Google Scholar 

  20. Yan C, Su Z, Gu E, Cao T, Yang J, Liu J, Liu F, Lai Y, Li J and Liu Y 2012 Solution-based synthesis of chalcostibite (CuSbS2) nano bricks for solar energy conversion RSC Adv. 2 10481

    CAS  Google Scholar 

  21. Moosakhani S, Alvani A A S, Mohammadpour R, Ge Y and Hannula S P 2018 Solution synthesis of CuSbS2 nanocrystals: A new approach to control shape and size J. Alloys Compd. 736 190

    CAS  Google Scholar 

  22. Hobbis D, Wei K, Wang H, Martin J and Nolas G S 2017 Synthesis, structure, Te alloying, and physical properties of CuSbS2 Inorg. Chem. 56 14040

    CAS  PubMed  Google Scholar 

  23. Jiasong Z, Weidong X, Huaidong J, Wen C, Lijun L, Xinyu Y, Xiaojuan L and Haitao L 2010 A simple L-cystine-assisted solvothermal approach to Cu3SbS3 nanorods Mater. Lett. 64 1499

    Google Scholar 

  24. Gerein N J and Haber J A 2006 One-step synthesis and optical and electrical properties of thin-film Cu3BiS3 for use as a solar absorber in photovoltaic devices Chem. Mater. 18 6297

    CAS  Google Scholar 

  25. Chakraborty M, Thangavel R, Komninou P, Zhou Z and Gupta A 2019 Nanospheres and nanoflowers of copper bismuth sulfide (Cu3BiS3): Colloidal synthesis, structural, optical, and electrical characterization J. Alloys Compd. 776 142

    CAS  Google Scholar 

  26. Viezbicke BD and Birnie D P 2013 Solvothermal synthesis of Cu3BiS3 enabled by precursor complexing ACS Sustain. Chem. Eng. 1 306

    CAS  Google Scholar 

  27. Zhong J, Xiang W, Cai Q and Liang X 2012 Synthesis, characterization and optical properties of flower-like Cu3BiS3 nanorods. Mater. Lett. 70 63

    CAS  Google Scholar 

  28. Bombicz P, Mutikainen I, Krunks M, Leskela T, Madarasz J and Niinisto L 2004 Synthesis, vibrational spectra and X-ray structures of copper (I) thiourea complexes Inorg. Chim. Acta 357 513

    CAS  Google Scholar 

  29. Ozturk II, Kourkoumelis N, Hadjikakou S K, Manos M J, Tasiopoulos A J, Butler I S, Balzarini J and Hadjiliadis N 2011 Interaction of antimony (III) chloride with thiourea, 2-mercapto-5-methyl-benzimidazole, 3-methyl-2-mercaptobenzothiazole, 2-mercaptopyrimidine, and 2-mercaptopyridine J. Coord. Chem. 64 3859

    CAS  Google Scholar 

  30. Sankar R, Raghavan C M and Jayavel R 2007 Bulk growth and characterization of semi-organic nonlinear optical bis thiourea bismuth chloride single crystals Cryst. Growth Des. 7 501

    CAS  Google Scholar 

  31. Coelho A A 2003 TOPAS Version 3.1, Bruker AXS GmbH, Karlsruhe, Germany

  32. Larson A-C and Von Dreele R B 2004 General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86 748

    Google Scholar 

  33. Toby B H 2001 EXPGUI, A Graphical User Interface for GSAS J. Appl. Crystallogr. 34 210

    CAS  Google Scholar 

  34. Kumar P, Gusain M and Nagarajan R 2011 Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; Anionic (Cl, NO3, SO42−) influence on the product stoichiometry Inorg. Chem. 50 3065

    CAS  PubMed  Google Scholar 

  35. Gorai S, Ganguli D and Chaudhuri S 2005 Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process Cryst. Growth Des. 5 875

    CAS  Google Scholar 

  36. Qiu X, Ji S, Chen C, Liu G, Ye C 2013 Characterization, and surface-enhanced Raman scattering of near-infrared absorbing Cu3SbS3 nanocrystals CrystEngComm 15 10431

    CAS  Google Scholar 

  37. Kumar D S P, Chetty R, Femi O E, Chattopadhyay K, Malar P and Mallik R C 2017 Thermoelectric properties of Bi-doped tetrahedrite J. Electronic Mater. 46 2616

    Google Scholar 

  38. Karup-Moller S and Makovicky E 1974 Cu3SbS3, a new sulfosalt from the Llimaussaq alkaline intrusion South Greenland Am. Miner. 59 889

    Google Scholar 

  39. Kocman V and Nuffield E W 1973 The crystal structure of Wittichenite, Cu3BiS3 Acta Cryst. B 29 2528

    CAS  Google Scholar 

  40. Du B, Zhang R, Liu M, Chen K, Zhang H and Reece M J 2019 Crystal Structure and Improved Thermoelectric Performance of Iron Stabilized Cubic Cu3SbS3 Compound J. Mater. Chem. C 7 394

    CAS  Google Scholar 

  41. Yan C, Gu E, Liu F, Lai Y, Li J and Liu Y 2013 Colloidal synthesis and characterizations of Wittichenite copper bismuth sulfide nanocrystals Nanoscale 5 1789

    CAS  PubMed  Google Scholar 

  42. Yakushev M V, Maiello P, Raadik T, Shaw M J, Edwards P R, Krustok J, Mudryi A V, Forbes I and Martin R W 2014 Electronic and structural characterization of Cu3BiS3 thin films for the absorber layer of sustainable photovoltaics Thin Solid Films 562 195

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from SERB (EMR/2016/006131 and EMR/2016/006762) Government of India for this work is gratefully acknowledged. Shalu thanks UGC, Govt. of India, for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamani Nagarajan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atri, S., Gusain, M., Kumar, P. et al. Role of the solvent medium in the wet-chemical synthesis of CuSbS2, Cu3SbS3, and bismuth substituted Cu3SbS3. J Chem Sci 132, 132 (2020). https://doi.org/10.1007/s12039-020-01831-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01831-z

Keywords

Navigation