Skip to main content
Log in

Quorum sensing-induced phenotypic switching as a regulatory nutritional stress response in a competitive two-species biofilm: An individual-based cellular automata model

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Competition for nutrients in a polymicrobial biofilm may lead to susceptible species being subjected to nutritional stress. The influence of bacterial growth rates and interspecies interactions on their susceptibility and response to nutritional stress is not well understood. Pseudomonas aeruginosa and Staphylococcus aureus are two prevalent causative pathogens that coexist in biofilm-associated infections. Despite being the slower-growing species, P. aeruginosa dominates in a two-species biofilm by inducing phenotypic switching of S. aureus to a metabolically-challenged small colony variant (SCV) via the release of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). We hypothesize that P. aeruginosa experiences nutritional stress in competition with S. aureus, and that the release of HQNO is an adaptive response to nutritional stress. We present an individual-based two-species biofilm model in which interactions between entities induce emergent properties. As the biofilm matured, the difference in growth rates of the two species caused a non-uniform distribution of nutrients leading to nutritional stress for P. aeruginosa and a concurrent increase in the proportion of S. aureus subpopulation. The latter resulted in increased release of autoinducer, and subsequently the upregulation of P. aeruginosa cells via quorum sensing. Upregulated P. aeruginosa cells released HQNO at enhanced rates, thereby inducing phenotypic switching of S. aureus to SCVs which consume nutrient at a reduced rate. This shifted the nutrient distribution back in favor of P. aeruginosa, thereby relieving nutritional stress. Increase in nutritional stress potentiated the transformation of S. aureus into SCVs. HQNO production decreased once nutritional stress was relieved, indicating that phenotypic switching acts as a regulatory stress-adaptive response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abidi SH, Sherwani SK, Siddiqui TR, Bashir A, and Kazmi SU 2013 Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol. 13 57

    PubMed  PubMed Central  Google Scholar 

  • Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, Wezel GP Van, and Rozen DE 2015 Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc. Natl. Acad. Sci. USA 112 11054–11059

    CAS  PubMed  Google Scholar 

  • Armbruster CE, Hong W, Pang B, Weimer KED, Juneau RA, Turner J, and Edward Swords W 2010 Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis media occurs via interspecies quorum signaling. MBio 1 e00102-10

    PubMed  PubMed Central  Google Scholar 

  • Armbruster CR, Wolter DJ, Mishra M, et al. 2016 Staphylococcus aureus protein a mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa. MBio 7 e00538-16

    PubMed  PubMed Central  Google Scholar 

  • Azevedo AS, Almeida C, Melo LF, and Azevedo NF 2017 Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit. Rev. Microbiol. 43 423–439

    CAS  PubMed  Google Scholar 

  • Bakkal S, Robinson SM, Ordonez CL, Waltz DA, and Riley MA 2010 Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology 56 2058–2067

    Google Scholar 

  • Berbari EF, Osmon DR, Duffy MCT, Harmssen RNW, Mandrekar JN, Hanssen AD, and Steckelberg JM 2006 Outcome of prosthetic joint infection in patients with rheumatoid arthritis: the impact of medical and surgical therapy in 200 episodes. Clin. Infect. Dis. 42 216–223

    PubMed  Google Scholar 

  • Bester E, Wolfaardt G, Joubert L, Garny K, and Saftic S 2005 Planktonic-Cell Yield of a Pseudomonad Biofilm. Appl. Environ. Microbiol. 71 7792–7798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambless JD and Stewart PS 2007 A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol. Bioeng. 97 1573–1584

    CAS  PubMed  Google Scholar 

  • Chang I, Gilbert ES, Eliashberg N, and Keasling JD 2003 A three-dimensional, stochastic simulation of biofilm growth and transport-related factors that affect structure. Microbiology 149 2859–2871

    CAS  PubMed  Google Scholar 

  • Cohen TS et al. 2016 Staphylococcus aureus α toxin potentiates opportunistic bacterial lung infections. Sci. Transl. Med. 8 329ra31-329ra31

  • Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, and Rahme LG 2004 Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101 1339–1344

    PubMed  Google Scholar 

  • Duus LM, Høiby N, Wang M, Schiøtz O, and Nørskov-Lauritsen N 2013 Bacteria of the genus Dyella can chronically colonise the airways of patients with cystic fibrosis and elicit a pronounced antibody response. Int. J. Med. Microbiol. 303 267–269

    CAS  PubMed  Google Scholar 

  • Emerenini BO, Hense BA, Kuttler C, and Eberl HJ 2015 A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10 e0132385

    PubMed  PubMed Central  Google Scholar 

  • Eyoh AB edi. et al. 2014 Relationship between multiple drug resistance and biofilm formation in Staphylococcus aureus isolated from medical and non-medical personnel in Yaounde, Cameroon. Pan Afr. Med. J. 17 186

    PubMed  Google Scholar 

  • Fagerlind MG et al. 2012 Dynamic modelling of cell death during biofilm development. J. Theor. Biol. 295 23–36

    PubMed  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS, Krogfelt KA, Givskov M, and Tolker-Nielsen T 2009 Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J. Clin. Microbiol. 47 4084–4089

    PubMed  PubMed Central  Google Scholar 

  • Filkins LM and O’Toole GA 2015 Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLOS Pathog. 11 e1005258

    PubMed  PubMed Central  Google Scholar 

  • Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, and O’Toole GA 2015 Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. 197 2252–2264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fozard JA, Lees M, King JR, and Logan BS 2012 Inhibition of quorum sensing in a computational biofilm simulation. Biosystems 109 105–114

    CAS  PubMed  Google Scholar 

  • Gardner SE and Frantz RA 2008 Wound bioburden and infection-related complications in diabetic foot ulcers. Biol. Res. Nurs. 10 44–53

    PubMed  PubMed Central  Google Scholar 

  • Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, and Krogfelt KA 2006 Multiple bacterial species reside in chronic wounds: a longitudinal study. Int. Wound J. 3 225–331

    PubMed  Google Scholar 

  • Guélon T, Mathias JD, and Deffuant G 2012 Influence of spatial structure on effective nutrient diffusion in bacterial biofilms. J. Biol. Phys. 38 573–588

    PubMed  PubMed Central  Google Scholar 

  • Gutierrez Jauregui R, Fleige H, Bubke A, Rohde M, Weiss S, and Förster R 2019 IL-1β promotes Staphylococcus aureus biofilms on implants in vivo. Front. Immunol. 10 1082

    PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton JW, and Stoodley P 2004 Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2 95–108

    CAS  PubMed  Google Scholar 

  • Haruta S, Kato S, Yamamoto K, and Igarashi Y 2009 Intertwined interspecies relationships: approaches to untangle the microbial network. Environ. Microbiol. 11 2963–2969

    PubMed  Google Scholar 

  • Hoffman LR et al. 2006 Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 103 19890–19895

    CAS  PubMed  Google Scholar 

  • Hoffman LR et al. 2010 Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF Airway. PLoS Pathog. 6 e1000712

    PubMed  PubMed Central  Google Scholar 

  • Høiby N et al. 2017 Diagnosis of biofilm infections in cystic fibrosis patients. APMIS 125 339–343

    PubMed  Google Scholar 

  • Hunt SM, Werner EM, Huang B, Hamilton MA, and Stewart PS 2004 Hypothesis for the role of nutrient starvation in biofilm detachment. Appl. Environ. Microbiol. 70 7418–7425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito A, Taniuchi A, May T, Kawata K, and Okabe S 2009 Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl. Environ. Microbiol. 75 4093–4100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korgaonkar AK and Whiteley M 2011 Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J. Bacteriol. 193 909–917

    CAS  PubMed  Google Scholar 

  • Korgaonkar A, Trivedi U, Rumbaugh KP, and Whiteley M 2013 Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc. Natl. Acad. Sci. USA 110 1059–1064

    CAS  PubMed  Google Scholar 

  • Kreft J-U, Booth G, and Wimpenny JWT 1998 BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144 3275–3287

    CAS  PubMed  Google Scholar 

  • Kroukamp O, Dumitrache RG, and Wolfaardt GM 2010 Pronounced effect of the nature of the inoculum on biofilm development in flow systems. Appl. Environ. Microbiol. 76 6025–6031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langebrake JB, Dilanji GE, Hagen SJ, and Leenheer P De 2014 Traveling waves in response to a diffusing quorum sensing signal in spatially-extended bacterial colonies. J. Theor. Biol. 363 53–61

    PubMed  Google Scholar 

  • Lau GW, Hassett DJ, Ran H, and Kong F 2004 The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10 599–606

    CAS  PubMed  Google Scholar 

  • Lightbown JW and Jackson FL 1956 Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem. J. 63 130–137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machineni L, Rajapantul A, Nandamuri V, and Pawar PD 2017 Influence of nutrient availability and quorum sensing on the formation of metabolically inactive microcolonies within structurally heterogeneous bacterial biofilms: an individual-based 3D cellular automata model. Bull. Math. Biol. 79 594–618

    CAS  PubMed  Google Scholar 

  • Machineni L, Reddy CT, Nandamuri V, and Pawar PD 2018 A 3D individual-based model to investigate the spatially heterogeneous response of bacterial biofilms to antimicrobial agents. Math. Methods Appl. Sci. 41 8571–8588

    Google Scholar 

  • Martin B, Tamanai-Shacoori Z, Bronsard J, Ginguené F, Meuric V, Mahé F, and Bonnaure-Mallet M 2017 A new mathematical model of bacterial interactions in two-species oral biofilms. PLoS One 12 e0173153

    PubMed  PubMed Central  Google Scholar 

  • Mazumdar V, Amar S, and Segrè D 2013 Metabolic proximity in the order of colonization of a microbial community. PLoS One 8 e77617

    CAS  PubMed  PubMed Central  Google Scholar 

  • McBirney SE, Trinh K, Wong-Beringer A, and Armani AM 2016 Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates. Biomed. Opt. Express 7 4034

    PubMed  PubMed Central  Google Scholar 

  • McDaniel MS, Schoeb T, and Swords WE 2020 Cooperativity between Stenotrophomonas maltophilia and Pseudomonas aeruginosa during polymicrobial airway infections. Infect. Immun. 88 e00855-19

    PubMed  PubMed Central  Google Scholar 

  • Mitchell G, Séguin DL, Asselin AE, Déziel E, Cantin AM, Frost EH, Michaud S, and Malouin F 2010 Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol. 10 33

    PubMed  PubMed Central  Google Scholar 

  • Moghadam SO, Pourmand MR, and Aminharati F 2014 Biofilm formation and antimicrobial resistance in methicillin-resistant staphylococcus aureus isolated from burn patients, Iran. J. Infect. Dev. Ctries. 8 1511–1517

    Google Scholar 

  • Nadell CD, Drescher K, and Foster KR 2016 Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14 589–600

    CAS  PubMed  Google Scholar 

  • Nguyen AT, Jones JW, Ruge MA, Kane MA, and Oglesby-Sherrouse AG 2015 Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa. J. Bacteriol. 197 2265–2275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nyström T 2001 Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch. Microbiol. 176 159–164

    PubMed  Google Scholar 

  • Nyström T 2003 Conditional senescence in bacteria: death of the immortals. Mol. Microbiol. 48 17–23

    PubMed  Google Scholar 

  • Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, and Foster KR 2015 Biofilm formation as a response to ecological competition. PLoS Biol. 13 e1002191

    PubMed  PubMed Central  Google Scholar 

  • Parijs I and Steenackers HP 2018 Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms. ISME J. 12 2061–2075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez AC et al. 2014 Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog. Dis. 70 280–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petroff AP, Wu T Di, Liang B, Mui J, Guerquin-Kern JL, Vali H, Rothman DH, and Bosak T 2011 Reaction–diffusion model of nutrient uptake in a biofilm: theory and experiment. J. Theor. Biol. 289 90–95

    CAS  PubMed  Google Scholar 

  • Phalak P, Chen J, Carlson RP, and Henson MA 2016 Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst. Biol. 10 90

    PubMed  PubMed Central  Google Scholar 

  • Picioreanu C, Loosdrecht MCM Van, and Heijnen JJ 1998 A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol. Bioeng. 57 718–731

    CAS  PubMed  Google Scholar 

  • Picioreanu C, Loosdrecht MCM Van, and Heijnen JJ 2001 Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng. 72 205–218

    CAS  PubMed  Google Scholar 

  • Picioreanu C, Kreft JU, and Loosdrecht MCM Van 2004 Particle-based multidimensional multispecies biofilm model. Appl. Environ. Microbiol. 70 3024–3040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor RA, Eiff C von, Kahl BC, Becker K, McNamara P, Herrmann M, and Peters G 2006 Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol. 4 295–305

    CAS  PubMed  Google Scholar 

  • Pulimood S, Ganesan L, Alangaden G, and Chandrasekar P 2002 Polymicrobial candidemia. Diagn. Microbiol. Infect. Dis. 44 353–357

    PubMed  Google Scholar 

  • Qi L et al. 2016 Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front. Microbiol. 7 483

    PubMed  PubMed Central  Google Scholar 

  • Sena NT, Gomes BPFA, Vianna ME, Berber VB, Zaia AA, Ferraz CCR, and Souza-Filho FJ 2006 In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species biofilms. Int. Endod. J. 39 878–885

    CAS  PubMed  Google Scholar 

  • Stewart PS 1993 A model of biofilm detachment. Biotechnol. Bioeng. 41 111–117

    CAS  PubMed  Google Scholar 

  • Stewart PS 1998 A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol. Bioeng. 59 261–272

    CAS  PubMed  Google Scholar 

  • Stewart PS 2003 Diffusion in biofilms. J. Bacteriol. 185 1485–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swidsinski A, Verstraelen H, Loening-Baucke V, Swidsinski S, Mendling W, and Halwani Z 2013 Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLoS One 8 e53997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D 1977 Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58 338–348

    CAS  Google Scholar 

  • Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, and Kolter R 2013 Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4 e00459–13

    PubMed  PubMed Central  Google Scholar 

  • Van Bodegom P 2007 Microbial maintenance: a critical review on its quantification. Microb. Ecol. 53 513–523

    PubMed  PubMed Central  Google Scholar 

  • Vuotto C, Longo F, Balice M, Donelli G, and Varaldo P 2014 Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3 743–758

    PubMed  PubMed Central  Google Scholar 

  • Wijesinghe G, Dilhari A, Gayani B, Kottegoda N, Samaranayake L, and Weerasekera M 2019 Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med. Princ. Pract. 28 28–35

    PubMed  Google Scholar 

  • Woods J, Boegli L, Kirker KR, Agostinho AM, Durch AM, deLancey Pulcini E, Stewart PS, and James GA 2012 Development and application of a polymicrobial, in vitro, wound biofilm model. J. Appl. Microbiol. 112 998–1006

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag D Pawar.

Additional information

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirathanamettu, T.R., Pawar, P.D. Quorum sensing-induced phenotypic switching as a regulatory nutritional stress response in a competitive two-species biofilm: An individual-based cellular automata model. J Biosci 45, 122 (2020). https://doi.org/10.1007/s12038-020-00092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00092-9

Keywords

Navigation