Skip to main content
Log in

Low-Loss and Dispersion-Flattened Octagonal Porous Core PCF for Terahertz Transmission Applications

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In order to make the direct transmission more effective, we have intended an octagonal shape cladding design in this paper. The minimum resultant effective material loss obtained from our proposed photonic crystal fiber is 0.007 cm−1 at 0.5 THz is very effective. The proposed design gives an ultra-high birefringence of 0.06 with an effective area of about 4 × 10−6 m2, a core power fraction of 70% for 290 µm core diameter with a core porosity of 80% at 1.6 THz frequency and closely zero flattened dispersion of variation of 0.3 ± 0.1 ps/THz/cm at a wide frequency range of 0.7–2.1 THz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahmed K, Chowdhury S, Paul BK, Islam MS, Sen S, Islam MI, Asaduzzaman S (2017a) Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl Opt 56:3477–3483

    Google Scholar 

  • Ahmed K, Chowdhury S, Paul BK, Islam MS, Sen S, Islam MI, Asaduzzaman S (2017b) Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl Opt 56(12):3477–3483

    Google Scholar 

  • Atakaramians S, Afshar S, Fischer BM, Abbott D, Monro TM (2008) Porous fibers: a novel approach to low loss THz waveguides. Opt Express 16(12):8845–8854

    Google Scholar 

  • Attenuation by Atmospheric Gases (2013) International telecommunication union ITU-R recommendation, p 676–710

  • Bao HL, Nielsen K, Rasmussen HK, Jepsen PU, Bang O (2012) Fabrication and characterization of porous-core honeycomb band gap THz fibers. Opt Express 20:29507–29517

    Google Scholar 

  • Bao H, Kristian N, Ole B, Peter UJ (2015) Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding. Sci Rep 5:7620

    Google Scholar 

  • Byrne MB, Shaukat MU, Cunningham JE, Linfield EH, Davies AG (2011) Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro-optic detection. Appl Phys Lett 98(15):151104

    Google Scholar 

  • Chamberlain J (2004) Where optics meets electronics: recent progress in decreasing the terahertz gap. Philos Trans R Soc A 362:199–213

    Google Scholar 

  • Chau Y-F, Yeh H-H, Tsai DP (2008) Analysis of high birefringence of four types of photonic crystal fiber by combining circular and elliptical air holes in fiber cladding. Int J Opt 2008:239037. https://doi.org/10.1155/2008/239037

    Article  Google Scholar 

  • Chen L-J, Chen H-W, Kao T-F, Lu J-Y, Sun C-K (2006) Low- loss sub wavelength plastic fiber for terahertz wave guiding. Opt Lett 31(3):308–310

    Google Scholar 

  • Goto M, Quema A, Takahashi H, Ono S, Sarukura N (2004) Teflon photonic crystal fiber as terahertz waveguide. Jpn J Appl Phys 43(2B):L317

    Google Scholar 

  • Habib MA, Anower MS (2019) Design and numerical analysis of highly birefringent single mode fiber in THz regime. Opt Fiber Technol 47:197–203

    Google Scholar 

  • Han H, Park H, Cho M, Kim J (2002) Terahertz pulse propagation in a plastic photonic crystal fiber. Appl Phys Lett 80(15):2634–2636

    Google Scholar 

  • Han J, Li S, Zhang T (2016) Design on a novel hybrid-core photonic crystal fiber with large birefringence and high nonlinearity. Opt Quantum Electron 48:1–11

    Google Scholar 

  • Hasan I, Razzak SMA, Hasanuzzaman GKM, Habib S (2014) Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photon Technol Lett 26(23):2372–2375

    Google Scholar 

  • Hasan MR, Anower MS, Islam MA, Razzak SMA (2016a) Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl Opt 51:4145–4152

    Google Scholar 

  • Hasan MR, Anower MS, Islam MA, Razzak SMA (2016b) Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl Opt 55(15):4145–4152

    Google Scholar 

  • Hasanuzzaman GKM, Rana S, Habib MS (2016) A novel low loss, highly birefringent photonic crystal fiber in THz regime. IEEE Photon Technol Lett 28(8):899–902

    Google Scholar 

  • Hassani AD, Skorobogatiy M (2008) Low loss porous terahertz fibers containing multiple sub-wavelength holes. Appl Phys Lett 92:071101

    Google Scholar 

  • Islam R, Habib MS, Hasanuzzaman GKM, Rana S, Sadath MA (2014) Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance. Opt Lett 41(3):440–443

    Google Scholar 

  • Islam R, Hasanuzzaman GKM, Habib MS, Rana S, Khan MAG (2015) Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt Fiber Technol 24:38–43

    Google Scholar 

  • Islam MS, Rana S, Islam MR, Faisal M, Rahman H, Sultana J (2016a) Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun 10:2179–2183

    Google Scholar 

  • Islam R, Habib MS, Hasanuzzaman GKM, Rana S, Sadath MA (2016b) Islam for low-loss polarization maintaining THz wave guidance. Opt Lett 41(3):440–443

    Google Scholar 

  • Islam MS, Sultana J, Ahmed K, Dinovitser A, Islam MR, Ng BW-H, Abbott D (2018a) A novel approach for spectroscopic chemical identification using photonic crystal fiber in the Terahertz Regime. IEEE Sens J 18(2):575–582

    Google Scholar 

  • Islam MS, Sultana J, Dinovitser A, Ng WHB, Abbott D (2018b) Sensing of toxic chemicals using polarized photonic crystal fiber in the Terahertz region. Opt Commun 426:341–347

    Google Scholar 

  • Islam MS, Sultana J, Dinovitser A, Ng BWH, Abbott D (2018c) A novel zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications. Opt Commun 413(15):242–248

    Google Scholar 

  • Islam MS, Sultana J, Dinovitser A, Ng BWH, Abbott D (2018d) Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl Opt 57(4):666–672

    Google Scholar 

  • Islam MS, Sultana J, Dinovitser A, Ng BWH, Abbott D (2018e) A novel zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications. Opt Commun 413:242–248

    Google Scholar 

  • Kaijage SF, Ouyang Z, Jin X (2013a) Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photon Technol Lett 25(15):1454–1457

    Google Scholar 

  • Kaijage SF, Ouyang Z, Jin X (2013b) Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photon Technol 25:1454–1457

    Google Scholar 

  • Knight JC, Birks TA, Cregan RF, St P, Russell J, De Andro PD (1998) Large mode area photonic crystal fibre. Electron Lett 34:1347–1348

    Google Scholar 

  • Luo J, Tian F, Hongkun Q, Li L, Zhang J, Yang X, Yuan L (2017) Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence. Appl Opt 56(24):6993–7001

    Google Scholar 

  • Miah MJ, Kalosha VP, Rosales R, Bimberg D (2016) Novel types of photonic band crystal high power and high brightness semiconductor lasers. Front Optoelectron 9:225–237

    Google Scholar 

  • Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photon 10:371–379

    Google Scholar 

  • Nagel M, Bolivar PH, Brucherseifer M, Kurz H, Bosserhoff A, Bttner R (2002) Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett 80:154–156

    Google Scholar 

  • Nielsen K, Rasmussen HK, Adam AJ, Planken PC, Bang O, Jepsen PU (2009) Bendable, low-loss topas fibers for the terahertz frequency range. Opt Express 17:8592–8601

    Google Scholar 

  • Rana S, Islam MS, Faisal MM, Roy KC, Islam R, Kaijage SF (2016) Extremely low loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt Eng 55:076117

    Google Scholar 

  • Roy S, Kayser SF, Azmaeen T (2016) Design and optimization of a single mode octagonal photonic crystal fiber for high negative dispersion and high nonlinearity. In: 5th international conference on informatics, electronics and vision (ICIEV), Dhaka, Bangladesh. https://doi.org/10.1109/ICIEV.2016.7760075

  • Strachan CJ, Taday PF, Newnham DA (2005) Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J Pharm Sci 94:837–846

    Google Scholar 

  • Sultana J, Islam MS, Abbott D (2017) High numerical aperture, highly birefringent novel photonic. Electron Lett 54:61–62

    Google Scholar 

  • Sultana J, Islam S, Ahmed K, Dinovitser A, Ng BWH, Abbott D (2018) Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl Opt 57(10):2426–2433

    Google Scholar 

  • Sultana J, Islam MR, Faisal M, Talha KMA, Islam MS (2019) Design and analysis of a Zeonex based diamond-shaped core kagome lattice photonic crystal fiber for T-ray wave transmission. Opt Fiber Technol 47:55–60

    Google Scholar 

  • Valtna-Lukner H, Repan J, Valdma SM, Piksarv P (2016) Endlessly single-mode photonic crystal fiber as a high resolution probe. Appl Opt 55:9407–9411

    Google Scholar 

  • Wang K, Mittleman DM (2004) Metal wires for terahertz wave guiding. Nature 432(7015):376–379

    Google Scholar 

  • Wang TEY, Jiang H, Hu Z, Xie K (2015) High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Opt Exp 23(7):8329–8337

    Google Scholar 

  • Withayachumnankul W, Png GM, Yin X, Atakaramians S, Jones I, Lin H, Ung BSY, Balakrishnan J, Ng BWH, Ferguson B, Mickan SP, Fischer BM, Abbott D (2007) T-ray sensing and imaging. In: Proceedings of IEEE, vol 95, pp 1528–1558 (2007)

  • Woyessa G, Fasano A, Stefani A, Markos C, Nielsen K, Rasmussen HK, Bang O (2016) Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt Express 24:1253–1260

    Google Scholar 

  • Wu Z, Shi Z, Xia H, Zhou X, Deng Q, Huang J, Jiang X, Wu W (2016a) Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photon J 8:4502711

    Google Scholar 

  • Wu Z, Zhou X, Shi Z, Xia H, Huang J, Jiang X, Wu W (2016b) Proposal for high-birefringent terahertz photonic crystal fiber with all circle air holes. Opt Eng 55:037105

    Google Scholar 

  • Wu Z, Zhou X, Xia H, Shi Z, Huang J, Jiang X, Weidong W (2017) Low-loss polarization-maintaining THz photonic crystal fiber with a triple-hole core. Appl Opt 56(8):2288–2293

    Google Scholar 

  • Zhang JQ, Grischkowsky D (2004) Waveguide terahertz time-domain spectroscopy of manometer water layers. Opt Lett 29:1617–1619

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Islam, M.R., Tasnim, Z. et al. Low-Loss and Dispersion-Flattened Octagonal Porous Core PCF for Terahertz Transmission Applications. Iran J Sci Technol Trans Electr Eng 44, 1583–1592 (2020). https://doi.org/10.1007/s40998-020-00337-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-020-00337-1

Keywords

Navigation