Skip to main content
Log in

Effect of Ultraviolet Radiation on the Long-Term Stability of Dye-Sensitized Solar Cells

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) radiation has been a significant issue in photovoltaics. It has much stronger energy than visible or infrared ray. In photovoltaics, large energy of UV is useful for the photogeneration, but it is also involved in long-term degradation. In this work, we focused on the effect of UV irradiation on the long-term stability of dye-sensitized solar cells (DSCs). TiO2, which is a good photocatalyst, has the absorption in UV region and TiO2 excited by UV is possible to deteriorate DSC performance. Five kinds of filters with various filtering ranges were applied for DSCs and their photovoltaic properties were measured in the long-term. UV irradiation initially contributed to the increase in the photogeneration. However, the UV irradiated DSC exhibited earlier start of degradation and more rapid deterioration than other filtered DSCs. Consequently, the unfiltered DSC exhibited 29.7% decrease in comparison with initial performance after 160 h UV irradiation while other filtered DSCs exhibited 13.5% decrease averagely.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  2. O’Regan, B., Grätzel, M., Fitzmaurice, D.: Optical electrochemistry steady-state spectroscopy of conduction band electrons in a metal oxide semiconductor electrode. Chem. Phys. Lett. 183, 89–93 (1991)

    Google Scholar 

  3. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Google Scholar 

  4. Durr, M., Schmid, A., Obermaier, M., Rosselli, S., Yasuda, A., Nelles, G.: Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat. Mater. 4, 607–611 (2005)

    Google Scholar 

  5. Grätzel, M.: Solar cells to dye for. Nature 421, 586–587 (2003)

    Google Scholar 

  6. Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841–6851 (2005)

    Google Scholar 

  7. Yun, S., Qin, Y., Uhl, A.R., Vlachopoulos, N., Yin, M., Li, D., Han, X., Hagfeldt, A.: New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci. 11, 476–526 (2018)

    CAS  Google Scholar 

  8. Yun, S., Freitas, J.N., Nogueira, A.F., Wang, Y., Ahmad, S., Wang, Z.-S.: Dye-sensitized solar cells employing polymers. Prog. Polym. Sci. 59, 1–40 (2016)

    CAS  Google Scholar 

  9. Yun, S., Liu, Y., Zhang, T., Ahmad, S.: Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells. Nanoscale 7, 11877–11893 (2015)

    CAS  Google Scholar 

  10. Yun, S., Hagfeldt, A., Ma, T.: Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv. Mater. 26, 6210–6237 (2014)

    CAS  Google Scholar 

  11. Yun, S., Zhang, Y., Xu, Q., Liu, J., Qin, Y.: Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60, 600–619 (2019)

    CAS  Google Scholar 

  12. Yun, S., Vlachopoulos, N., Qurashi, A., Ahmad, S., Hagfeldt, A.: Dye sensitized photoelectrolysis cells. Chem. Soc. Rev. 48, 3705–3722 (2019)

    CAS  Google Scholar 

  13. Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., Hanaya, M.: Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51, 15894–15897 (2015)

    CAS  Google Scholar 

  14. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 39). Prog. Photovolt: Res. Appl. 20, 12–20 (2012)

    Google Scholar 

  15. Syrrokostas, G., Siokou, A., Leftheriotis, G., Yianoulis, P.: Degradation mechanisms of Pt counter electrodes for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 103, 119–127 (2012)

    CAS  Google Scholar 

  16. Yang, R.-Y., Chen, H.-Y., Lai, F.-D.: Performance degradation of dye-sensitized solar cells induced by electrolytes. Adv. Mater. Sci. Eng. 2012, 902146 (2012)

    Google Scholar 

  17. Chalkias, D.A., Loizos, D.D., Papanicolaou, G.C.: Evaluation and prediction of dye-sensitized solar cells stability under different accelerated ageing conditions. Sol. Energy 207, 841–850 (2020)

    CAS  Google Scholar 

  18. Moudam, O., Gamouz, A.E.: Delaying the degradation caused by water of dye-sensitized solar cells. Org. Electron. 36, 7–11 (2016)

    CAS  Google Scholar 

  19. Agrell, H.G., Lindgren, J., Hagfeldt, A.: Degradation mechanisms in a dye-sensitized solar cell studied by UV–VIS and IR spectroscopy. Sol. Energy 75, 169–180 (2003)

    Google Scholar 

  20. Bari, D., Wrachien, N., Meneghesso, G., Andrea, C.: Study of the effects of UV-exposure on dye-sensitized solar cells. In: 2013 IEEE International Reliability Physics Symposium (IRPS), pp. 4B.3.1–4B.3.7 (2013). https://doi.org/10.1109/irps.2013.6532011

  21. Nakajima, S., Katoh, R.: Mechanism of degradation of electrolyte solutions for dye-sensitized solar cells under ultraviolet light irradiation. Chem. Phys. Lett. 619, 36–38 (2015)

    CAS  Google Scholar 

  22. Carnie, M., Watson, T., Worsley, D.: UV filtering of dye-sensitized solar cells: the effects of varying the UV cut-off upon cell performance and incident photon-to-electron conversion efficiency. Int. J. Photoenergy 2012, 506132 (2012). https://doi.org/10.1155/2012/506132

    Article  CAS  Google Scholar 

  23. Kim, S., Son, M., Park, S., Jeong, M., Seo, H., Prabakar, K., Kim, H.: Fabrication of mesoporous TiO2 double layer using dicarboxylic acid in dye-sensitized solar cell. Electron. Mater. Lett. 10, 229–234 (2014)

    CAS  Google Scholar 

  24. Son, Y.J., Kang, J.S., Yoon, J., Kim, J., Jeong, J., Kang, J., Lee, M.J., Park, H.S., Sung, Y.-E.: Influence of TiO2 particle size on dye-sensitized solar cells employing an organic sensitizer and a cobalt(III/II) redox electrolyte. J. Phys. Chem. C 122, 7051–7060 (2018)

    CAS  Google Scholar 

  25. Shashanka, R., Esgin, H., Yilmaz, V.M., Caglar, Y.: Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. J. Sci.-Adv. Mater. Dev. 5, 185–191 (2020)

    Google Scholar 

  26. Lai, F.-I., Yang, J.-F., Hsu, Y.-C., Kuo, S.-Y.: Enhanced omnidirectional light harvesting in dye-sensitized solar cells with periodic ZnO nanoflower photoelectrodes. J. Colloid Interface Sci. 562, 63–70 (2020)

    CAS  Google Scholar 

  27. Xie, F., Wang, J., Li, Y., Dou, J., Wei, M.: One-step synthesis of hierarchical SnO2/TiO2 composite hollow microspheres as an efficient scattering layer for dye-sensitized solar cells. Electrochim. Acta 296, 142–148 (2019)

    CAS  Google Scholar 

  28. Wu, S., Han, H., Tai, Q., Zhang, J., Xu, S., Zhou, C., Yang, Y., Hu, H., Chen, B., Zhao, X.: Improvement in dye-sensitized solar cells employing TiO2 electrodes coated with Al2O3 by reactive direct current magnetron sputtering. J. Power Sources 182, 119–123 (2008)

    CAS  Google Scholar 

  29. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    CAS  Google Scholar 

  30. Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Péchy, P., Grätzel, M.: Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt: Res. Appl. 15, 603–612 (2007)

    CAS  Google Scholar 

  31. Seo, H., Son, M.-K., Itagaki, N., Koga, K., Shiratani, M.: Polymer counter electrode of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) containing TiO2 nano-particles for dye-sensitized solar cells. J. Power Sources 307, 25–30 (2016)

    CAS  Google Scholar 

  32. Seo, H., Son, M., Shin, I., Kim, J., Lee, K., Prabakar, K., Kim, H.: Faster dye-adsorption of dye-sensitized solar cells by applying an electric field. Electrochim. Acta 55, 4120–4123 (2010)

    CAS  Google Scholar 

  33. Kim, J., Seo, H., Son, M., Shin, I., Hong, J., Kim, H.: The analysis of the change in the performance and impedance of dye-sensitized solar cell according to the dye-adsorption time. Curr. Appl. Phys. 10, s418–s421 (2010)

    Google Scholar 

  34. Seo, H., Son, M.-K., Kim, J.-K., Shin, I., Prabakar, K., Kim, H.-J.: Method for fabricating the compact layer in dye-sensitized solar cells by titanium sputter deposition and acid-treatments. Sol. Energy Mater. Sol. Cells 95, 340–343 (2011)

    CAS  Google Scholar 

  35. Seo, H., Son, M.-K., Park, S., Jeong, M., Kim, H.-J., Uchida, G., Itagaki, N., Koga, K., Shiratani, M.: Electrochemical impedance analysis on the additional layers for the enhancement on the performance of dye-sensitized solar cell. Thin Solid Films 554, 122–126 (2014)

    CAS  Google Scholar 

  36. Tachibana, Y., Hara, K., Sayama, K., Arakawa, H.: Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem. Mater. 14, 2527–2535 (2002)

    CAS  Google Scholar 

  37. Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., Tachiya, M.: Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films. J. Phys. Chem. B 108, 4818–4822 (2004)

    CAS  Google Scholar 

  38. Zhang, J., Zhu, H.-C., Zhong, R.-L., Wang, L., Su, Z.-M.: Promising heterocyclic anchoring groups with superior adsorption stability and improved IPCE for high-efficiency noncarboxyl dye sensitized solar cells: a theoretical study. Org. Electron. 54, 104–113 (2018)

    CAS  Google Scholar 

  39. Yun, S., Lund, P.D., Hinsch, A.: Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 8, 3495–3514 (2015)

    CAS  Google Scholar 

  40. Wang, C., Yun, S., Fan, Q., Wang, Z., Zhang, Y., Han, F., Si, Y., Hagfeldt, A.: A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: a general strategy for understanding the catalytic mechanism. J. Mater. Chem. A 7, 14864–14875 (2019)

    CAS  Google Scholar 

  41. Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol., C 4, 145–153 (2003)

    Google Scholar 

  42. Liu, W., Liu, Y., Ai, Y., Liu, F., Duan, J.: Lifetime multiplier of dye-sensitized solar cell: origin of performance degradation and the core photoelectric conversion interface reconstruction. Electrochim. Acta 280, 216–220 (2018)

    CAS  Google Scholar 

  43. Wang, Y.-H., Wong, D.S.: Modelling accelerated degradation test and shelf-life prediction of dye-sensitized solar cells with different types of solvents. Sol. Energy 118, 600–610 (2015)

    CAS  Google Scholar 

  44. Lee Ji Won, Jae Hong Kim, Suresh Thogiti (2018) A polymer electrolyte for dye-sensitized solar cells based on a poly(polyvinylidenefluoride-co-hexafluoropropylene)/hydroxypropyl methyl cellulose blend. Electron. Mater. Lett. 14, 342–347 (2018)

    Google Scholar 

  45. Phuong Ho, Toi Nguyen Van, Ji Hyun Lee, Yu Jeong Jang, Rajesh Cheruku, Chinho Park, Kwang-Soon Ahn, Jae Hong Kim, (2019) Shape control iron pyrite synthesized by hot injection method: counter electrode for efficient dye-sensitized solar cells. Electron. Mater. Lett. 15, 350–356 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2018 Inje University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwoong Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, MK., Seo, H. Effect of Ultraviolet Radiation on the Long-Term Stability of Dye-Sensitized Solar Cells. Electron. Mater. Lett. 16, 556–563 (2020). https://doi.org/10.1007/s13391-020-00249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00249-6

Keywords

Navigation