Skip to main content
Log in

TRAF6-mediated ubiquitination of MST1/STK4 attenuates the TLR4-NF-κB signaling pathway in macrophages

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pattern-recognition receptors including Toll-like receptors (TLRs) recognize invading pathogens and trigger an immune response in mammals. Here we show that mammalian ste20-like kinase 1/serine/threonine kinase 4 (MST1/STK4) functions as a negative regulator of lipopolysaccharide (LPS)-induced activation of the TLR4-NF-κB signaling pathway associated with inflammation. Myeloid-specific genetic ablation of MST1/STK4 increased the susceptibility of mice to LPS-induced septic shock. Ablation of MST1/STK4 also enhanced NF-κB activation triggered by LPS in bone marrow-derived macrophages (BMDMs), leading to increased production of proinflammatory cytokines by these cells. Furthermore, MST1/STK4 inhibited TRAF6 autoubiquitination as well as TRAF6-mediated downstream signaling induced by LPS. In addition, we found that TRAF6 mediates the LPS-induced activation of MST1/STK4 by catalyzing its ubiquitination, resulting in negative feedback regulation by MST1/STK4 of the LPS-induced pathway leading to cytokine production in macrophages. Together, our findings suggest that MST1/STK4 functions as a negative modulator of the LPS-induced NF-κB signaling pathway during macrophage activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bierschenk D, Boucher D, Schroder K (2017) Salmonella-induced inflammasome activation in humans. Mol Immunol 86:38–43. https://doi.org/10.1016/j.molimm.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  2. Weiss G, Schaible UE (2015) Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264:182–203. https://doi.org/10.1111/imr.12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a006049

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kagan JC (2017) Lipopolysaccharide detection across the kingdoms of life. Trends Immunol 38:696–704. https://doi.org/10.1016/j.it.2017.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyake K (2004) Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12:186–192. https://doi.org/10.1016/j.tim.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  6. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176. https://doi.org/10.1038/nri1004

    Article  CAS  PubMed  Google Scholar 

  7. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088. https://doi.org/10.1126/science.282.5396.2085

    Article  CAS  PubMed  Google Scholar 

  8. Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491. https://doi.org/10.3389/fimmu.2014.00491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979. https://doi.org/10.1038/ni1116

    Article  CAS  PubMed  Google Scholar 

  10. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996) TRAF6 is a signal transducer for interleukin-1. Nature 383:443–446. https://doi.org/10.1038/383443a0

    Article  CAS  PubMed  Google Scholar 

  11. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J (1998) MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 273:12203–12209

    Article  CAS  Google Scholar 

  12. Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615

    Article  CAS  Google Scholar 

  13. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361

    Article  CAS  Google Scholar 

  14. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351. https://doi.org/10.1038/35085597

    Article  CAS  PubMed  Google Scholar 

  15. Hayden MS, Ghosh S (2012) NF-kB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234. https://doi.org/10.1101/gad.183434.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 Years of NF-kB: a blossoming of relevance to human pathobiology. Cell 168:37–57. https://doi.org/10.1016/j.cell.2016.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Creasy CL, Ambrose DM, Chernoff J (1996) The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J Biol Chem 271:21049–21053

    Article  CAS  Google Scholar 

  18. Dan I, Watanabe NM, Kusumi A (2001) The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol 11:220–230

    Article  CAS  Google Scholar 

  19. Creasy CL, Chernoff J (1995) Cloning and characterization of a human protein kinase with homology to Ste20. J Biol Chem 270:21695–21700. https://doi.org/10.1074/jbc.270.37.21695

    Article  CAS  PubMed  Google Scholar 

  20. Ling P, Lu TJ, Yuan CJ, Lai MD (2008) Biosignaling of mammalian Ste20-related kinases. Cell Signal 20:1237–1247. https://doi.org/10.1016/j.cellsig.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  21. Thompson BJ, Sahai E (2015) MST kinases in development and disease. J Cell Biol 210:871–882. https://doi.org/10.1083/jcb.201507005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, Hong L, Xie C, Li X, Zhao H, Liu Q, Jiang M, Chen Q, Zhang J, Li Y, Song S, Wang HR, Zhou R, Johnson RL, Chien KY, Lin SC, Han J, Avruch J, Chen L, Zhou D (2015) Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol 16:1142–1152. https://doi.org/10.1038/ni.3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, Wang Y, Su H, Jia A, Hu Y, Han L, Zhang J, Li S, Tao W, Liu G (2017) Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun 8:14275. https://doi.org/10.1038/ncomms14275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li W, Xiao J, Zhou X, Xu M, Hu C, Xu X, Lu Y, Liu C, Xue S, Nie L, Zhang H, Li Z, Zhang Y, Ji F, Hui L, Tao W, Wei B, Wang H (2015) STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma. J Clin Investig 125:4239–4254. https://doi.org/10.1172/jci81203

    Article  PubMed  Google Scholar 

  25. Zhao S, Yin J, Zhou L, Yan F, He Q, Huang L, Peng S, Jia J, Cheng J, Chen H, Tao W, Ji X, Xu Y, Yuan Z (2016) Hippo/MST1 signaling mediates microglial activation following acute cerebral ischemia-reperfusion injury. Brain Behav Immun 55:236–248. https://doi.org/10.1016/j.bbi.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  26. Du X, Wen J, Wang Y, Karmaus PWF, Khatamian A, Tan H, Li Y, Guy C, Nguyen TM, Dhungana Y, Neale G, Peng J, Yu J, Chi H (2018) Hippo/Mst signalling couples metabolic state and immune function of CD8a+ dendritic cells. Nature 558:141–145. https://doi.org/10.1038/s41586-018-0177-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee IY, Lim JM, Cho H, Kim E, Kim Y, Oh HK, Yang WS, Roh KH, Park HW, Mo JS, Yoon JH, Song HK, Choi EJ (2019) MST1 negatively regulates TNFa-induced NF-kB signaling through modulating LUBAC activity. Mol Cell 73:1138–1149.e1136. https://doi.org/10.1016/j.molcel.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  28. Oh S, Lee D, Kim T, Kim TS, Oh HJ, Hwang CY, Kong YY, Kwon KS, Lim DS (2009) Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse. Mol Cell Biol 29:6309–6320. https://doi.org/10.1128/mcb.00551-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kwon J, Han E, Bui CB, Shin W, Lee J, Lee S, Choi YB, Lee AH, Lee KH, Park C, Obin MS, Park SK, Seo YJ, Oh GT, Lee HW, Shin J (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep 13:150–156. https://doi.org/10.1038/embor.2011.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katagiri K, Katakai T, Ebisuno Y, Ueda Y, Okada T, Kinashi T (2009) Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J 28:1319–1331. https://doi.org/10.1038/emboj.2009.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yun HJ, Yoon JH, Lee JK, Noh KT, Yoon KW, Oh SP, Oh HJ, Chae JS, Hwang SG, Kim EH, Maul GG, Lim DS, Choi EJ (2011) Daxx mediates activation-induced cell death in microglia by triggering MST1 signalling. EMBO J 30:2465–2476. https://doi.org/10.1038/emboj.2011.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roh KH, Choi EJ (2016) TRAF2 functions as an activator switch in the reactive oxygen species-induced stimulation of MST1. Free Radic Biol Med 91:105–113. https://doi.org/10.1016/j.freeradbiomed.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  33. Ryoo K, Huh SH, Lee YH, Yoon KW, Cho SG, Choi EJ (2004) Negative regulation of MEKK1-induced signaling by glutathione S-transferase Mu. J Biol Chem 279:43589–43594. https://doi.org/10.1074/jbc.M404359200

    Article  CAS  PubMed  Google Scholar 

  34. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456. https://doi.org/10.1093/emboj/20.3.446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem 282:4102–4112. https://doi.org/10.1074/jbc.M609503200

    Article  CAS  PubMed  Google Scholar 

  36. Walsh MC, Lee J, Choi Y (2015) Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev 266:72–92. https://doi.org/10.1111/imr.12302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280:35625–35629. https://doi.org/10.1074/jbc.C500237200

    Article  CAS  PubMed  Google Scholar 

  38. Zotti T, Scudiero I, Settembre P, Ferravante A, Mazzone P, D'Andrea L, Reale C, Vito P, Stilo R (2014) TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1. Mol Immunol 58:27–31. https://doi.org/10.1016/j.molimm.2013.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moscat J, Diaz-Meco MT, Wooten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32:95–100. https://doi.org/10.1016/j.tibs.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  40. Jadhav T, Geetha T, Jiang J, Wooten MW (2008) Identification of a consensus site for TRAF6/p62 polyubiquitination. Biochem Biophys Res Commun 371:521–524. https://doi.org/10.1016/j.bbrc.2008.04.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee KK, Yonehara S (2002) Phosphorylation and dimerization regulate nucleocytoplasmic shuttling of mammalian STE20-like kinase (MST). J Biol Chem 277:12351–12358. https://doi.org/10.1074/jbc.M108138200

    Article  CAS  PubMed  Google Scholar 

  42. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J (2004) Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 381:453–462. https://doi.org/10.1042/bj20040025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, Moscat J (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13:343–354. https://doi.org/10.1016/j.ccr.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  44. Duran A, Serrano M, Leitges M, Flores JM, Picard S, Brown JP, Moscat J, Diaz-Meco MT (2004) The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell 6:303–309

    Article  CAS  Google Scholar 

  45. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586. https://doi.org/10.1093/emboj/19.7.1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J (1999) The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J 18:3044–3053. https://doi.org/10.1093/emboj/18.11.3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seibold K, Ehrenschwender M (2015) p62 regulates CD40-mediated NFkB activation in macrophages through interaction with TRAF6. Biochem Biophys Res Commun 464:330–335. https://doi.org/10.1016/j.bbrc.2015.06.153

    Article  CAS  PubMed  Google Scholar 

  48. Joung I, Strominger JL, Shin J (1996) Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain. Proc Natl Acad Sci USA 93:5991–5995. https://doi.org/10.1073/pnas.93.12.5991

    Article  CAS  PubMed  Google Scholar 

  49. Park I, Chung J, Walsh CT, Yun Y, Strominger JL, Shin J (1995) Phosphotyrosine-independent binding of a 62-kDa protein to the src homology 2 (SH2) domain of p56lck and its regulation by phosphorylation of Ser-59 in the lck unique N-terminal region. Proc Natl Acad Sci USA 92:12338–12342. https://doi.org/10.1073/pnas.92.26.12338

    Article  CAS  PubMed  Google Scholar 

  50. Schimmack G, Schorpp K, Kutzner K, Gehring T, Brenke JK, Hadian K, Krappmann D (2017) YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kB. Elife. https://doi.org/10.7554/eLife.22416

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martin P, Diaz-Meco MT, Moscat J (2006) The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J 25:3524–3533. https://doi.org/10.1038/sj.emboj.7601250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anand R, Kim AY, Brent M, Marmorstein R (2008) Biochemical analysis of MST1 kinase: elucidation of a C-terminal regulatory region. Biochemistry 47:6719–6726. https://doi.org/10.1021/bi800309m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. https://doi.org/10.1128/cmr.00046-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qian C, Liu J, Cao X (2014) Innate signaling in the inflammatory immune disorders. Cytokine Growth Factor Rev 25:731–738. https://doi.org/10.1016/j.cytogfr.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  55. Afonina IS, Zhong Z, Karin M, Beyaert R (2017) Limiting inflammation-the negative regulation of NF-kB and the NLRP3 inflammasome. Nat Immunol 18:861–869. https://doi.org/10.1038/ni.3772

    Article  CAS  PubMed  Google Scholar 

  56. Darnay BG, Ni J, Moore PA, Aggarwal BB (1999) Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 274:7724–7731. https://doi.org/10.1074/jbc.274.12.7724

    Article  CAS  PubMed  Google Scholar 

  57. Ishida T, Mizushima S, Azuma S, Kobayashi N, Tojo T, Suzuki K, Aizawa S, Watanabe T, Mosialos G, Kieff E, Yamamoto T, Inoue J (1996) Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271:28745–28748. https://doi.org/10.1074/jbc.271.46.28745

    Article  CAS  PubMed  Google Scholar 

  58. Khursigara G, Orlinick JR, Chao MV (1999) Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem 274:2597–2600. https://doi.org/10.1074/jbc.274.5.2597

    Article  CAS  PubMed  Google Scholar 

  59. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13:1015–1024. https://doi.org/10.1101/gad.13.8.1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Yonehara, S. Kang, and D. Goeddel for Flag-MST1/STK4, HA-ubiquitin, and TRAF6 cDNAs, respectively, as well as V. M. Dixit for the antibody to K63-linked polyubiquitin and T. Kinashi for MST1/STK4fl/fl mice. This work was supported by a National Research Foundation grant (NRF-2020R1A2C2011392) funded by the Ministry of Science and ICT of Korea as well as by a Korea University grant (E.-J.C.). K.-H.R. was supported financially by a Global Ph.D. fellowship (2016H1A2A1907478) funded by the Ministry of Science and ICT of Korea.

Author information

Authors and Affiliations

Authors

Contributions

KHR, YL, IYL, DL, EK, EP, and JHY conducted the experiments. KHR, YL, EP, TSK, HKS, JHY and EJC designed the experiments. DSL and JS provided materials. KHR and EJC wrote the paper.

Corresponding author

Correspondence to Eui-Ju Choi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, KH., Lee, Y., Yoon, JH. et al. TRAF6-mediated ubiquitination of MST1/STK4 attenuates the TLR4-NF-κB signaling pathway in macrophages. Cell. Mol. Life Sci. 78, 2315–2328 (2021). https://doi.org/10.1007/s00018-020-03650-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03650-4

Keywords

Navigation