Skip to main content
Log in

Analysis of the Roughness Regimes for Micropolar Fluids via Homogenization

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of micropolar fluid flows in a thin domain of thickness \(\eta _\varepsilon \) with a periodic oscillating boundary with wavelength \(\varepsilon \). We consider the limit when \(\varepsilon \) tends to zero and, depending on the limit of the ratio of \(\eta _\varepsilon /\varepsilon \), we prove the existence of three different regimes. In each regime, we derive a generalized Reynolds equation taking into account the microstructure of the roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization of the Stokes flow in a connected porous medium. Asymp. Anal. 2, 203–222 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Anguiano, M., Suárez-Grau, F.J.: Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary. IMA J. Appl. Math. 84, 63–95 (2019)

    Article  MathSciNet  Google Scholar 

  3. Arbogast, T., Douglas, J.R.J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    Article  MathSciNet  Google Scholar 

  4. Bayada, G., Chambat, M.: The transition between the Stokes equations and the Reynolds equation: a mathematical proof. Appl. Math. Opt. 14, 73–93 (1986)

    Article  MathSciNet  Google Scholar 

  5. Bayada, G., Chambat, M.: New models in the theory of the hydrodynamic lubrication of rough surfaces. J. Tribol. 110, 402–407 (1988)

    Article  Google Scholar 

  6. Bayada, G., Chambat, M.: Homogenization of the Stokes system in a thin film flow with rapidly varying thickness. RAIRO Modél. Math. Anal. Numér. 23, 205–234 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bayada, G., Chambat, M., Gamouana, S.R.: About thin film micropolar asymptotic equations. Quart. Appl. Math. 59, 413–439 (2001)

    Article  MathSciNet  Google Scholar 

  8. Bayada, G., Ciuperca, I., Jai, M.: Homogenized elliptic equations and variational inequalities with oscillating parameters. Application to the study of thin flow behavior with rough surfaces. Nonlinear Anal. Real World Appl. 7, 950–966 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bayada, G., Lukaszewicz, G.: On micropolar fluids in the theory of lubrication. Rigorous derivation of an analogue of the Reynolds equation. Int. J. Eng. Sci. 34, 1477–1490 (1996)

    Article  MathSciNet  Google Scholar 

  10. Benhaboucha, N., Chambat, M., Ciuperca, I.: Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary. Quart. Appl. Math. 63, 369–400 (2005)

    Article  MathSciNet  Google Scholar 

  11. Benterki, D., Benseridi, H., Dilmi, M.: On a non-stationary, non-Newtonian lubrication problem with Tresca fluid-solid law. J. Inverse Ill Posed Probl. 27, 719–730 (2019)

    Article  MathSciNet  Google Scholar 

  12. Bonnivard, M., Pazanin, I., Suárez-Grau, F.J.: Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B. Fluids 72, 501–518 (2018)

    Article  MathSciNet  Google Scholar 

  13. Boukrouche, M., Paoli, L.: Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary. SIAM J. Math. Anal. 44, 1211–1256 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bresch, D., Choquet, C., Chupin, L., Colin, T., Gisclon, M.: Roughness-induced effect at main order on the Reynolds approximation. SIAM Multiscale Model. Simul. 8, 997–1017 (2010)

    Article  MathSciNet  Google Scholar 

  15. Boukrouche, M., Ciuperca, I.: Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid–solid interface law. Quart. Appl. Math. 64, 561–591 (2006)

    Article  MathSciNet  Google Scholar 

  16. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C.R. Acad. Sci. Paris Ser. I 335, 99–104 (2002)

    Article  MathSciNet  Google Scholar 

  17. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40, 1585–1620 (2008)

    Article  MathSciNet  Google Scholar 

  18. Chupin, L., Martin, S.: Rigorous derivation of the thin film approximation with roughness-induced correctors. SIAM J. Math. Anal. 44, 2041–3070 (2012)

    Article  MathSciNet  Google Scholar 

  19. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. ZAMM Z. Angew. Math. Mech. 88, 793–807 (2008)

    Article  MathSciNet  Google Scholar 

  20. Duvaut, G., Lions, J.L.: Les inequations en mechanique et en physique [The Inequations in Mechanics and Physics]. Dunod, Paris (1972)

    MATH  Google Scholar 

  21. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–16 (1966)

    MathSciNet  Google Scholar 

  22. Fabricius, J., Koroleva, Y.O., Tsandzana, A., Wall, P.: Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary. Proc. R. Soc. A 470, 20130735 (2014)

    Article  MathSciNet  Google Scholar 

  23. Johnston, G.J., Wayte, R., Spikes, H.A.: The measurement and study of very thin lubricant films in concentrated contacts. Tribol. Trans. 34, 187–194 (1991)

    Article  Google Scholar 

  24. Letoufa, Y., Benseridi, H., Dilmi, M.: Study of Stokes dynamical system in a thin domain with Fourier and Tresca boundary conditions. Asian Eur. J. Math. (2019). https://doi.org/10.1142/S1793557121500078

    Article  MATH  Google Scholar 

  25. Lukaszewicz, G.: Micropolar Fluids, Theory and Applications. Modeling and Simulation in Science. Birkhaüser, London (1999)

    MATH  Google Scholar 

  26. Luo, J.B., Huang, P., Wen, S.Z.: Thin film lubrication part I: study on the transition between EHL and thin film lubrication using relative optical interference intensity technique. Wear 194, 107–115 (1996)

    Article  Google Scholar 

  27. Luo, J.B., Huang, P., Wen, S.Z., Lawrence, L.: Characteristics of fluid lubricant films at nano-scale. J. Tribol. 121, 872–878 (1999)

    Article  Google Scholar 

  28. Marusić-Paloka, E., Pazanin, I., Marusić, S.: An effective model for the lubrication with micropolar fluid. Mech. Res. Comm. 52, 69–73 (2013)

    Article  Google Scholar 

  29. Mikelić, A.: Remark on the result on homogenization in hydrodynamical lubrication by G. Bayada and M. Chambat. RAIRO Modél. Math. Anal. Numér. 25, 363–370 (1991)

    Article  MathSciNet  Google Scholar 

  30. Mikelić, A., Tapiero, R.: Mathematical derivation of the power law describing polymer flow through a thin slab. Modélisation Math. Anal. Numér. 29, 3–21 (1995)

    Article  MathSciNet  Google Scholar 

  31. Pazanin, I., Suárez-Grau, F.J.: Analysis of the thin film flow in a rough thin domain filled with micropolar fluid. Comput. Math. Appl. 68, 1915–1932 (2014)

    Article  MathSciNet  Google Scholar 

  32. Singh, C., Sinha, P.: The three-dimensional Reynolds’ equation for micropolar fluid lubricated bearings. Wear 76, 199–209 (1982)

    Article  Google Scholar 

  33. Suárez-Grau, F.J.: Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary. Nonlinear Anal. 117, 99–123 (2015)

    Article  MathSciNet  Google Scholar 

  34. Tartar, L.: Incompressible fluid flow in a porous medium convergence of the homogenization process. In: Appendix to Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Suárez-Grau.

Additional information

Communicated by Syakila Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Computation of the Coefficients of the Micropolar Reynolds Equation

Appendix: Computation of the Coefficients of the Micropolar Reynolds Equation

In this appendix, we describe how to obtain the coefficient of the Reynolds equation

$$\begin{aligned} \mathrm{div}_{z'}\left( -{h^3(z')\over 1-N^2}\varPhi (h(z'),N,R_c)\nabla _{z'}\bar{p}(z') + b(z')\right) =0\quad \hbox {in }\omega , \end{aligned}$$
(104)

where \(b(x')= {h^3(z')\over 1-N^2}\varPhi (h(z'),N,R_c)f'(z')\) and \(\varPhi \) defined by (78), from the micropolar system posed in \(\varOmega =\{(z',z_3)\in \mathbb {R}^2\times \mathbb {R}:\,z'\in \omega ,\ 0<z_3<h(z')\}\), given by

$$\begin{aligned}&\left\{ \begin{array}{ll}\displaystyle -\partial _{z_3}^2 {\bar{u}}_1+\partial _{z_1}{\bar{p}}(z')+2N^2\partial _{z_3} {\bar{w}}_2={\bar{f}}_1(z')&{}\ \,\mathrm{in}\,\varOmega ,\\ -R_c\partial _{z_3}^2 {\bar{w}}_2+4N^2 {\bar{w}}_2-2N^2\partial _{z_3}\bar{u}_1={\bar{g}}_2(z')&{}\ \,\mathrm{in}\,\varOmega , \end{array}\right. \end{aligned}$$
(105)
$$\begin{aligned}&\left\{ \begin{array}{l}\displaystyle -\partial _{z_3}^2 {\bar{u}}_2+\partial _{z_2}{\bar{p}}(z')-2N^2\partial _{z_3} {\bar{w}}_1={\bar{f}}_2(z')\ \,\mathrm{in}\,\varOmega ,\\ -R_c\partial _{z_3}^2 {\bar{w}}_1+4N^2 {\bar{w}}_1+2N^2\partial _{z_3}\bar{u}_2={\bar{g}}_1(z')\ \,\mathrm{in}\,\varOmega , \end{array}\right. \end{aligned}$$
(106)

together with

$$\begin{aligned} \partial _{z_1}\left( \int _0^{h(z')}{\bar{u}}_1(z',z_3)\,\mathrm{d}z_3\right) + \partial _{z_2}\left( \int _0^{h(z')}{\bar{u}}_2(z',z_3)\,\mathrm{d}z_3\right) =0\quad \,\mathrm{in}\,\omega , \end{aligned}$$
(107)

and boundary conditions

$$\begin{aligned} {\bar{u}}'(z',0)={\bar{u}}'(z',h(z'))={\bar{w}}'(z',0)={\bar{w}}'(z',h(z'))=0. \end{aligned}$$
(108)

We note that \(({\bar{u}}_1, {\bar{w}}_2)\), with external forces \((\bar{f}',{\bar{g}}')\), and \(({\bar{u}}_2, -{\bar{w}}_1)\), with external forces \(({\bar{f}}',-{\bar{g}}')\), satisfy the same equations and boundary conditions. So we only describe the computation of \(({\bar{u}}_1, \bar{w}_2)\).

First, from the first equation of (105) we have

$$\begin{aligned} \partial _{z_3}{\bar{u}}_1(z)=\left( \partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z')\right) z_3+2N^2{\bar{w}}_2(z) + C(z'). \end{aligned}$$
(109)

Putting this into the second equation of (105), we have

$$\begin{aligned} \begin{array}{l} \partial _{z_3}^2{\bar{w}}_2(z)-{4N^2\over R_c}(1-N^2){\bar{w}}_2(z)\\ =-{2N^2\over R_c}\left( \partial _{z_1}{\bar{p}}(z')-\bar{f}_1(z')\right) z_3 -{1\over R_c} {\bar{g}}_2(z')+ {2N^2\over R_C} C(z'). \end{array} \end{aligned}$$
(110)

The solution is

$$\begin{aligned} \begin{array}{ll} {\bar{w}}_2(z)=&{}A(z')\cosh (kz_3)+B(z')\sinh (kz_3)\\ &{}+{1\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z'))z_3\\ &{}+{1\over 2(1-N^2)}C(z') +{1\over 4N^2(1-N^2)}{\bar{g}}_2(z'), \end{array} \end{aligned}$$
(111)

where \(k=\sqrt{{4N^2(1-N^2)\over R_c}}\) and A and B are unknowns functions.

Putting this solution into equation (110), we can write \({\bar{u}}_1\) as follows

$$\begin{aligned} \begin{aligned} {\bar{u}}_1(z)&= {z_3^2\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-f_1(z'))\\&\quad +{2N^2\over k}(A(z')\sinh (kz_3)+B(z')\cosh (kz_3))\\&\quad +{z_3\over 1-N^2}C(z')+{z_3\over 2(1-N^2)}{\bar{g}}_2(z')+D(z'). \end{aligned} \end{aligned}$$
(112)

We rewrite CD, as a function of A and B, using the boundary conditions. So, for \({\bar{u}}_1(z',0)={\bar{w}}_2(z',0)=0\), we, respectively, get

$$\begin{aligned}D(z')=-{2N^2\over k}B(z'),\quad C(z')=2(1-N^2)\left( -A(z')-{1\over 4N^2(1-N^2)}{\bar{g}}_2(z')\right) ,\end{aligned}$$

and so

$$\begin{aligned} \begin{aligned} {\bar{u}}_1(z)&={z_3^2\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z'))+\left( {2N^2\over k}\sinh (kz_3)-2z_3\right) A(z')\\&\quad +{2N^2\over k}(\cosh (kz_3)-1)B(z')-{z_3\over 2N^2}{\bar{g}}_2(z'),\\ {\bar{w}}_2(z)&={z_3\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z'))\\&\quad +(\cosh (kz_3)-1)A(z')+\sinh (k z_3)B(z'). \end{aligned} \end{aligned}$$
(113)

Using the boundary conditions \({\bar{u}}_1(z',h(z'))=\bar{w}_2(z',h(z'))=0\), we get the following system

$$\begin{aligned}Q\left( \begin{array}{c} A\\ B \end{array}\right) =-{h(z')\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z'))\left( \begin{array}{c} h(z')\\ 1 \end{array}\right) + {\bar{g}}_2(z'){h(z')\over 2N^2} \left( \begin{array}{c} 1\\ 0 \end{array}\right) ,\end{aligned}$$

where Q is the matrix defined by

$$\begin{aligned}Q=\left( \begin{array}{cc} {2N^2\over k}\sinh (k h(z'))-2h(z') &{} {2N^2\over k}(\cosh (kh(z'))-1)\\ \cosh (kh(z'))-1&{} \sinh (kh(z')) \end{array}\right) .\end{aligned}$$

The solution of this system is given by

$$\begin{aligned} A(z')=-{h(z')\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z'))A_1(z')+ {h(z')\over 2N^2}{\bar{g}}_2(z')A_2(z'),\\ B(z')=-{h(z')\over 2(1-N^2)}(\partial _{z_1}{\bar{p}}(z')-\bar{f}_1(z'))B_1(z')+ {h(z')\over 2N^2}{\bar{g}}_2(z')B_2(z'), \end{aligned}$$

where \(A_1(z')\), \(B_1(z')\) and \(A_2(z')\), \(B_2(z')\) are solution of

$$\begin{aligned}Q\left( \begin{array}{c} A_1\\ B_1 \end{array}\right) =\left( \begin{array}{c} h(z')\\ 1 \end{array}\right) \quad \hbox {and}\quad Q\left( \begin{array}{c} A_2\\ B_2 \end{array}\right) =\left( \begin{array}{c} 1\\ 0 \end{array}\right) .\end{aligned}$$

Calculating \(A_i\), \(B_i\) for \(i = 1, 2\), we have

$$\begin{aligned}\begin{array}{l} \displaystyle A_1(z')=-{1\over 2},\\ \displaystyle A_2(z')={\sinh (kh(z'))\over -2h(z')\sinh (kh(z'))+{4N^2\over k}(\cosh (kh(z'))-1)},\\ \displaystyle B_1(z')={1\over 2}\coth \left( {kh(z')\over 2}\right) ,\\ \displaystyle B_2(z')={-(\cosh (kh(z')-1)\over -2h(z')\sinh (kh(z'))+{4N^2\over k}(\cosh (kh(z'))-1)}, \end{array}\end{aligned}$$

and then \({\bar{u}}_1\) and \({\bar{w}}_2\) are obtained by (113) as functions of \({\bar{p}}\), \({\bar{f}}_1\) and \({\bar{g}}_2\), by the following expressions

$$\begin{aligned} \begin{aligned} {\bar{u}}_1(z)&= \left[ {z_3^2\over 2(1-N^2)}+{1\over 4(1-N^2)}\left( {2N^2\over k}\sinh (kz_3)-2z_3\right) \right. \\&\quad \left. -{h(z')\over 2(1-N^2)}{N^2\over k}(\cosh (kh(z'))-1)\coth \left( {kh(z')\over 2}\right) \right] \left( \partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z')\right) \\&\quad +\Big [-{z_3\over 2N^2}+{h(z')\over 2N^2}\Big (\left( {2N^2\over k}\sinh (kz_3)-2z_3\right) A_2\\&\quad +{2N^2\over k}(\cosh (kz_3)-1)B_2\Big )\Big ]{\bar{g}}_2(z'),\\ {\bar{w}}_2(z)&=\Big [{z_3\over 2(1-N^2)} +{h(z')\over 4(1-N^2)}\Big (\cosh (kz_3)-1\\&\quad -\coth \left( {kh(z')\over 2}\right) \sinh (kz_3)\Big )\Big ]\left( \partial _{z_1}{\bar{p}}(z')-{\bar{f}}_1(z')\right) \\&\quad +{h(z')\over 2N^2}\left[ \cosh (kz_3)A_2+\sinh (kz_3)B_2\right] \bar{g}_2(z'). \end{aligned} \end{aligned}$$

As it was pointed at the beginning, expressions for \({\bar{u}}_2,\bar{w}_1\) are obtained by using the expressions of \({\bar{u}}_2\), \(\bar{w}_1\), and so we have

$$\begin{aligned} \begin{aligned} {\bar{u}}_2(z)&=\left[ {z_3^2\over 2(1-N^2)}+{1\over 4(1-N^2)}\left( {2N^2\over k}\sinh (kz_3)-2z_3\right) \right. \\&\quad \left. -{h(z')\over 2(1-N^2)}{N^2\over k}(\cosh (kh(z'))-1)\coth \left( {kh(z')\over 2}\right) \right] \left( \partial _{z_2}{\bar{p}}(z')-{\bar{f}}_2(z')\right) \\&\quad -\Big [-{z_3\over 2N^2}+{h(z')\over 2N^2}\left( \left( {2N^2\over k}\sinh (kz_3)-2z_3\right) A_2\right. \\&\quad \left. +{2N^2\over k}(\cosh (kz_3)-1)B_2\right) \Big ]{\bar{g}}_1(z'),\\ {\bar{w}}_1(z)&=-\Big [{z_3\over 2(1-N^2)} +{h(z')\over 4(1-N^2)}\Big (\cosh (kz_3)-1\\&\quad -\coth \left( {kh(z')\over 2}\right) \sinh (kz_3)\Big )\Big ]\left( \partial _{z_2}{\bar{p}}(z')-{\bar{f}}_2(z')\right) \\&\quad +{h(z')\over 2N^2}\left[ \cosh (kz_3)A_2+\sinh (kz_3)B_2\right] \bar{g}_1(z'). \end{aligned} \end{aligned}$$

We observe \({\bar{u}}'\) and \({\bar{w}}'\) can be rewritten as follows

$$\begin{aligned} \begin{aligned} {\bar{u}}'(z)&= \left[ {z_3^2\over 2(1-N^2)}+{1\over 4(1-N^2)}\left( {2N^2\over k}\sinh (kz_3)-2z_3\right) \right. \\&\quad \left. -{h(z')\over 2(1-N^2)}{N^2\over k}(\cosh (kh(z'))-1)\coth \left( {kh(z')\over 2}\right) \right] \left( \nabla _{z'}{\bar{p}}(z')-{\bar{f}}'(z')\right) \\&\quad -\Big [-{z_3\over 2N^2} +{h(z')\over 2N^2}\left( \left( {2N^2\over k}\sinh (kz_3)-2z_3\right) A_2\right. \\&\quad \left. +{2N^2\over k}(\cosh (kz_3)-1)B_2\right) \Big ](\bar{g}'(z'))^\perp , \end{aligned} \end{aligned}$$
(114)

and

$$\begin{aligned} \begin{aligned} {\bar{w}}'(z)&=\Big [{z_3\over 2(1-N^2)}+{h(z')\over 4(1-N^2)}\Big (\cosh (kz_3) -1\\&\quad -\coth \left( {kh(z')\over 2}\Big )\sinh (kz_3)\right) \Big ]\left( \nabla _{z'}{\bar{p}}(z')-{\bar{f}}'(z')\right) ^\perp \\&\quad +{h(z')\over 2N^2}\left[ \cosh (kz_3)A_2+\sinh (kz_3)B_2\right] \bar{g}'(z'). \end{aligned} \end{aligned}$$
(115)

Finally, integrating the expressions of \({\bar{u}}'\) and \({\bar{w}}'\) with respect to the variable \(z_3\), it holds that

$$\begin{aligned} \begin{array}{l} \displaystyle \int _0^{h(z')}{\bar{u}}_j'(z',z_3)\,\mathrm{d}z_3=-{h^3(z')\over 1-N^2}\varPhi (h(z'),N,R_c)\left( \partial _{z_j}{\bar{p}}(z')-{\bar{f}}_j(z')\right) ,\\ \displaystyle \int _0^{h(z')}{\bar{w}}_j'(z',z_3)\,\mathrm{d}z_3=-{1\over 4N^3}\sqrt{{R_c\over 1-N^2}}\varPsi (h(y'),N,R_c){\bar{g}}_j(z'), \end{array}\end{aligned}$$
(116)

for \(j=1,2\), with \(\varPhi \) and \(\varPsi \) defined by (78) and (79), respectively. Putting this in (107), we get the desired Reynolds equation (104).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Grau, F.J. Analysis of the Roughness Regimes for Micropolar Fluids via Homogenization. Bull. Malays. Math. Sci. Soc. 44, 1613–1652 (2021). https://doi.org/10.1007/s40840-020-01027-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01027-1

Keywords

Mathematics Subject Classification

Navigation