Skip to main content
Log in

Metagenomics Combined with Stable Isotope Probe (SIP) for the Discovery of Novel Dehalogenases Producing Bacteria

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Halogenated compounds are one of the largest groups of environmental-hazardous chemicals. The removal of the halogen atom from the substrate is possible by the catalytic activity of a type of enzyme called dehalogenase. Hydrolytic dehalogenases are suggested to be a good biodegradation catalyst for halogenated compounds with potential bioremediation applications. Therefore, the identification of possible bacterial strains that produce dehalogenase is of great importance. Soil microorganisms that are regularly exposed to halogenated pesticides are a major source of hydrolytic dehalogenase. Their proper identification may be useful in the production of high-quality dehalogenase. DNA stable isotope probing (DNA-SIP) is quite a useful technique for the identification of active microorganisms that assimilate specific carbon substrates and nutrients. Metagenomics combined with a stable isotope probe (SIP) technique could therefore be used to detect bacterial dehalogenases in pesticides exposed agricultural soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abramowicz DAA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit Rev Biotechnol 10:241–251

    CAS  Google Scholar 

  • Al-Bahri AK, Al-Bahry SN, Elshafie AE, Al-Wahaibi YM, Al-Bemani AS, Joshi SJ (2014) Application of molecular biology methods in identifying biosurfactant producers from oil contaminated sites. In: Farooq SA, Abed RM, Baqir S (eds) Biotechnology and conservation of species from arid regions. Nova Science Publishers Inc, New York, pp 527–540

    Google Scholar 

  • Ang T-F, Maiangwa J, Salleh AB, Normi YM, Leow TC, (. (2018) Dehalogenases: from improved performance to potential microbial dehalogenation applications. Molecules 23:1100

    Google Scholar 

  • Bell TH, Yergeau E, Martineau C, Juck D, Whyte LG, Greer CW (2011) Identification of nitrogen-incorporating bacteria in petroleum-contaminated Arctic soils by using [(15N]) DNA-based stable isotope probing and pyrosequencing. Appl Environ Microbiol 77(12):4163–4171

    CAS  Google Scholar 

  • Bhuyan B, Sarma HP (2004a) Public health impact of pesticide use in the Tea Gardens of Lakhimpur District, Assam. Ecol Environ Conserv 10:333–338

    CAS  Google Scholar 

  • Bhuyan B, Sarma HP (2004b) Ecology. Environ Conserv 10(3):333

    CAS  Google Scholar 

  • Bidmanova S, Chaloupkova R, Damborsky J, Prokop Z (2010) Development of an enzymatic fibre-opticbiosensor for detection of halogenated hydrocarbons. Anal Bioanal Chem 398:1891–1898

    CAS  Google Scholar 

  • Charya NS, Fernandez-Albaab AR (2012) Determination of volatile organic compounds in drinking and environmental waters. TrAC 32:60–75

    Google Scholar 

  • Chaudhary DK, Kim J (2019) New insights into bioremediation strategies for oil-contaminated soil in cold environments. Int Biodeter Biodegr 142:58–72

    CAS  Google Scholar 

  • Chenk T, Muller R, Lingens F (1990) Mechanism of enzymatic dehalogenation of entachlorophenol by Arthrobacter sp. strain ATCC 33790. J Bacteriol 172:7272–7274

    Google Scholar 

  • Copley SD (1997) Diverse mechanistic approaches to difficult chemical transformations: microbial dehalogenation of chlorinated aromatic compounds. Chem Biol 4:169–174

    CAS  Google Scholar 

  • Czaplicki LM, Gunsch CK (2016) Reflection on molecular approaches influencing state-of-the-art bioremediation design: culturing to microbial community fingerprinting to omics. J Environ Eng. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001141

    Article  Google Scholar 

  • De Jong RM (2003) Structure and mechanism of a bacterial haloalcohol dehalogenase: a new variation of theshort-chain dehydrogenase/reductase fold without an NAD(P)H binding site. EMBO J 22:4933–4944

    Google Scholar 

  • De Jong RM, Brugman W, Poelarends GJ, Whitman CP, Dijkstra BW (2004) The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily. J Biol Chem 279:11546–11552

    Google Scholar 

  • De Jong RM, Dijkstra BW (2003) Structure and mechanism of bacterial dehalogenases: different ways to cleave a carbon-halogen bond. Curr Opin Struct Biol 13:722–730

    Google Scholar 

  • De Pierre JW (2003) Mammalian toxicity of organic compounds of bromine and iodine. In: Nielson AH (ed) The handbook of environmental chemistry. Springer, Berlin, pp 205–251

    Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing – linking microbial identity to function. Nat Rev Microbiol 3:499–504

    CAS  Google Scholar 

  • Dunford EA, Neufeld JD (2010) DNA stable-isotope probing (DNA-SIP). J Vis Exp 42:20–27. https://doi.org/10.3791/2027

    Article  CAS  Google Scholar 

  • Dutta S, Rajnish KN, Samuel MS, Pugazlendhi A, Selvarajan E (2020) Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01010-z

    Article  Google Scholar 

  • Egland PG, Gibson J, Harwood CS (2001) Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 67:1396–1399

    CAS  Google Scholar 

  • Elangovan S, Pandian SBS, Geeth SJ, Joshi SJ (2019) Polychlorinated biphenyls (PCBs): environmental fate, challenges and bioremediation. In: Arora P (ed) Microbial metabolism of xenobiotic compounds. Microorganisms for sustainability. Springer, Singapore

    Google Scholar 

  • Elshafie AE, Al-Bahry S, Al-Wahaibi Y, Al-Bemani A, Joshi SJ, Al-Maini R, Al-Alawi W, Al-Mandhari M (2013) Bacterial diversity of Omani oil wells using culture dependent and independent techniques. APCBEE Proedria 5:247–252

    CAS  Google Scholar 

  • Feng K, Yu BY, Ge DM, Wong MH, Wang XC, Cao ZH (2003) Organo-chlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system: I. Field survey of DDT and HCH residues in ecosystem of the region. Chemosphere 50(6):683–687

    CAS  Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58:641–685

    CAS  Google Scholar 

  • Guan L, Yabuki H, Okai M, Ohtsuka J, Tanokura M (2014) Crystal structure of the novel haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 reveals a special halide-stabilizing pair and enantioselectivity mechanism. Appl Microbiol Biotechnol 98:8573–8582

    CAS  Google Scholar 

  • Handelsman J, Liles M, Mann D, Riesenfeld C (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Methods Microbiol 33:241–255

    CAS  Google Scholar 

  • Heeb NV, Zindel D, Geueke B, Kohler HPE, Lienemann P (2012) Biotransformation of hexabromocyclododecanes (HBCDs) with LinB-An HCH-converting bacterial enzyme. Environ Sci Technol 46:6566–6574

    CAS  Google Scholar 

  • Huidroma P, Sharma GD (2014) Microbial bioremediation of pesticide residues in tea soil. Online Int Interdiscip Res J 4:261–274

    Google Scholar 

  • Islam NF, Sarma H, Prasad MNV (2020) Emerging disinfection by-products in water: novel biofiltration techniques. Butterworth-Heinemann, Oxford, pp 109–135

    Google Scholar 

  • Joshi SJ, Al-Wahaibi Y, Al-Bahry S (2019) Biotransformation of heavy crude oil and biodegradation of oil pollution by arid zone bacterial strains. In: Arora PK (ed) Microbial metabolism of xenobiotic compounds. Springer, Singapore, pp 103–122

    Google Scholar 

  • Kirk KL (1991) Metabolism of halogenated compounds—biodehalogenation. In: Kirk KL (ed) Biochemistry of the elemental halogens and inorganic halides. Biochemistry of the elements, vol 9A+B. Springer, Boston

    Google Scholar 

  • Kurihara T, Esaki N (2008) Bacterial hydrolytic dehalogenases and related enzymes: occurrences, reaction mechanisms, and applications. Chem Rec 8:67–74

    CAS  Google Scholar 

  • Leewis MC, Uhlik O, Leigh MB (2016) Synergistic processing of biphenyl and benzoate: carbon flow through the bacterial community in polychlorinated-biphenyl- contaminated soil. Sci Rep 6:22145

    CAS  Google Scholar 

  • Li A, Shao Z (2014) Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5. PLoS ONE 9:e89144

    Google Scholar 

  • Lian Z, Li G, Xiong J, Mai B, Ana T (2019) Purification, molecular characterization and metabolic mechanism of an aerobic tetrabromobisphenol A dehalogenase, a key enzyme of halorespiration in Ochrobactrum sp. Chemosphere 237:124461

    Google Scholar 

  • Manefield M, Whiteley AS, Bailey MJ (2004) What can stable isotope probing do for bioremediation? Int Biodeterior Biodegrad 54:163–166

    CAS  Google Scholar 

  • Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 76:5773–5784

    CAS  Google Scholar 

  • Mazumdar PA, Hulecki JC, Halleck CM, Garen CR, James MNG (2008) X-ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579. Biochim Biophys Acta Proteins Proteom 1784:351–362

    CAS  Google Scholar 

  • Moldoveanu SC (2010) Pyrolysis of halogenated hydrocarbons. Tech Instrum Anal Chem 28(2010):231–258

    Google Scholar 

  • Negri A, Marco E, Damborsky J, Gago F (2007) Stepwise dissection and visualization of the catalytic mechanism of haloalkane dehalogenase LinB using molecular dynamics simulations and computer graphics. J Mol Graph Model 26:643–651

    CAS  Google Scholar 

  • Novak HR, Sayer C, Isupov MN, Paszkiewicz K, Gotz D, Mearns Spragg A, Ma LJA (2013) Rhodobacteraceae L-haloacid dehalogenase contains a novel His/Glu dyad that could activate the catalytic water. FEBS J 280:1664–1680

    CAS  Google Scholar 

  • Oakley AJ, Klvana M, Otyepka M, Nagata Y, Wilce MCJ, Damborský J (2004) Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics of catalytic residues. Biochemistry 43:870–878

    CAS  Google Scholar 

  • Omi R, Jitsumori K, Yamauchi T, Ichiyama S, Kurihara T, Esaki N, Kamiya N, Hirotsu K, Miyahara I (2007) Expression, purification and preliminary X-ray characterization of DL-2-haloacid dehalogenase from methylobacterium sp. CPA1. Acta Crystallogr F 63:586–589

    CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Google Scholar 

  • Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    CAS  Google Scholar 

  • Rye CA, Isupov MN, Lebedev AA, Littlechild JA (2009) Biochemical and structural studies of a l-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii. Extremophiles 13(179–190):2

    Google Scholar 

  • Sarma H, Islam NF, Prasad MNV (2016) Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, northeast India: Implications for the Bio economy. Environ Sci Pollut R 2(3):119–127

    Google Scholar 

  • Sarma H, Islam NF, Prasad MNV (2017) Plant-microbial association in petroleum and gas exploration sites in the state of Assam, north-east India—significance for bioremediation. Environ Sci Pollut R 24(9):8744–8758

    CAS  Google Scholar 

  • Sarma H, Nava AR, Prasad MNV (2019a) Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environ Technol Innov. https://doi.org/10.1016/j.eti.2018.12.004

    Article  Google Scholar 

  • Sarma H, Sonowal S, Prasad MNV (2019b) Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds - a microcosmic study. Ecotoxicol Environ Saf 176:288–299

    CAS  Google Scholar 

  • Sarma H, Lee WY (2018) Bacteria enhanced lignocellulosic activated carbon for biofiltration of bisphenols in water. Environ Sci Pollut Res 25:17227–17239

    CAS  Google Scholar 

  • Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269(5232):1851–1854

    CAS  Google Scholar 

  • Singh H, Kahlon RS (1989) Conjugative plasmid coding for the metabolism of 2-chlorobenzoic acid by Pseudomonas aeruginosa. MIRCEN J 5:255–258

    CAS  Google Scholar 

  • Turnbull A (1996) Chlorinated pesticides. In: Hester RE, Harrison RM (eds) Chlorinated organic micropollutants: issues in environmental science and technology. The Royal Society of Chemistry, Cambridge, pp 113–135

    Google Scholar 

  • Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova LMB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31:154–165

    CAS  Google Scholar 

  • Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83

    CAS  Google Scholar 

  • Vatsal AA, Zinjarde SS, Ravi KA (2017) Phenol is the initial product formed during growth and degradation of bromobenzene by tropical marine yeast, Yarrowia lipolytica NCIM 3589 via an early dehalogenation step. Front Microbiol 8:1–15

    Google Scholar 

  • Wackett LP, Schanke CA (1992) Mechanisms of reductive dehalogenation by transition metal cofactors found in anaerobic bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol. 28. Degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker Inc., New York, pp 329–356

    Google Scholar 

  • Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T, Muir D (2010) Endosulfan, a global pesticide: a review ofits fate in the environment and occurrence in the Arctic. Sci Total Environ 408(15):2966–2984

    CAS  Google Scholar 

  • Wischnak C, Loffler FE, Li J, Urbance JW, Muller R (1998) Pseudomonas sp. strain 273, an aerobic dichloroalkane-degrading bacterium. Appl Environ Microbiol 64:3507–3511

    CAS  Google Scholar 

  • Xu D, Huang C-H, Qin L, Xie L-N, Mao L, Shao J, Kalyanaraman B, Zhu B-Z (2020) An unexpected new pathway for nitroxide radical production via more reactive nitrogen-cantered amidyl radical intermediate during detoxification of the carcinogenic halogenated quinones by N-alkyl hydroxamic acids. Free Radic Biol Med 146:150–159

    Google Scholar 

  • Yergeau E, Sanschargrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high Arctic soils. PLoS ONE 7:30058

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to N.N. Saikia College, India and Sultan Qaboos University, Oman for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hemen Sarma or Sanket J. Joshi.

Ethics declarations

Conflict of interest

All authors declare that there is no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, H., Joshi, S.J. Metagenomics Combined with Stable Isotope Probe (SIP) for the Discovery of Novel Dehalogenases Producing Bacteria. Bull Environ Contam Toxicol 108, 478–484 (2022). https://doi.org/10.1007/s00128-020-03004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-03004-7

Keywords

Navigation