Skip to main content
Log in

Polymorphism and Phylogeny of the Vacuolar Invertase Inhibitor Gene INH2 Homologs in Solanaceae Species

  • GENETICS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

INH2 homologous genes encoding vacuolar invertase inhibitor were identified in 37 Solanaceae species, and the INH2 polymorphism was evaluated. A significant level of interspecific polymorphism of the INH2 coding sequence was found within the Petota and Lycopersicon sections, which corresponds to the high mutation rate during the evolution of the INH2 genes and presumably associated with the modern plant diversity. Structural analysis revealed the presence of conserved motifs and amino acid residues, non-transmembrane signal peptide and the PMEI domain in the INH2 proteins. The possibility of applying the INH2 sequence to assess the inter-genera and inter-section Solanaceae phylogeny was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bailey, T.L. and Elkan, C., Fitting a mixture model by expectation maximization to discover motifs in biopolymers, in Proc. Second Int. Conf. Intell. Systems Mol. Biol., California: AAAI Press, Menlo Park, 1994, pp. 28–36.

  2. Bate, N.J., Niu, X., Wang, Y., Reimann, K.S., and Helentjaris, T.G., An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development, Plant Physiol., 2004, vol. 134, no. 1, pp. 246–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brummell, D.A., Chen, R.K., Harris, J.C., Zhang, H., Hamiaux, C., Kralicek, A.V., and McKenzie, M.J., Induction of vacuolar invertase inhibitor mRNA in potato tubers contributes to cold-induced sweetening resistance and includes spliced hybrid mRNA variants, J. Exp. Bot., 2011, vol. 62, no. 10, pp. 3519–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., and Chan, A.P., Predicting the functional effect of amino acid substitutions and indels, PLoS One, 2012, vol. 7, no. 10. e46688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fukuoka, H., Yamaguchi, H., Nunome, T., Negoro, S., Miyatake, K., and Ohyama, A., Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato, Gene, 2010, vol. 450, nos. 1–2, pp. 76–84.

    Article  CAS  PubMed  Google Scholar 

  6. Gebhardt, C., The historical role of species from the Solanaceae plant family in genetic research, Theor. Appl. Genet., 2016, vol. 129, no. 12, pp. 2281–2294.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Greiner, S., Rausch, T., Sonnewald, U., and Herbers, K., Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers, Nat. Biotechnol, 1999, vol. 17, no. 7, pp. 708–711.

    Article  CAS  PubMed  Google Scholar 

  8. Hothorn, M., Wolf, S., Aloy, P., Greiner, S., and Scheffzek, K., Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins, Plant Cell, 2004, vol. 16, no. 12, pp. 3437–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J., The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc., 2015, vol. 10, no. 6, pp. 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knapp, S., Bohs, L., Nee, M., and Spooner, D.M., Solanaceae—a model for linking genomics with biodiversity, Comp. Funct. Genom., 2004, vol. 5, pp. 285–291.

    Article  CAS  Google Scholar 

  11. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Link, M., Rausch, T., and Greiner, S., In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles, FEBS Lett., 2004, vol. 573, nos. 1–3, pp. 105–110.

    Article  CAS  PubMed  Google Scholar 

  13. Machida-Hirano, R., Diversity of potato genetic resources, Breed. Sci., 2015, vol. 65, no. 1, pp. 26–40.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., De Lorenzo, G., Cervone, F., Bellincampi, D., and Tsernoglou, D., Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein, Plant Cell, 2005, vol. 17, no. 3, pp. 849–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moscone, E.A., Scaldaferro, M.A., Grabiele, M., Cecchini, N.M., Garcia, Y.S., Jarret, R., Davina, J.R., Ducasse, D.A., Barboza, G.E., and Ehrendorfer, F., The evolution of chili peppers (Capsicum—Solanaceae): a cytogenetic perspective, Acta Hort. ISHS, 2007, vol. 745, pp. 137–170.

    Article  CAS  Google Scholar 

  16. Peralta, I.E., Spooner, D.M., and Knapp, S., Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, Sect. Juglandifolia, Sect. Lycopersicon; Solanaceae), Syst. Bot. Monogr., 2008, vol. 84, pp. 1–186.

    Google Scholar 

  17. Pressey, R., Invertase inhibitor from potatoes: purification, characterization, and reactivity with plant invertases, Plant Physiol., 1967, vol. 42, no. 12, pp. 1780–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin, G., Zhu, Z., Wang, W., Cai, J., Chen, Y., Li, L., and Tian, S., A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening, Plant Physiol., 2016, vol. 172, no. 3, pp. 1596–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rausch, T. and Greiner, S., Plant protein inhibitors of invertases, Biochim. Biophys. Acta, 2004, vol. 16962. 253e261.

  20. Scognamiglio, M.A., Ciardiello, M.A., Tamburrini, M., Carratore, V., Rausch, T., and Camardella, L., The plant invertase inhibitor shares structural properties and disulfide bridges arrangement with the pectin methylesterase inhibitor, J. Protein Chem., 2003, vol. 22, pp. 363–369.

    Article  CAS  PubMed  Google Scholar 

  21. Sherson, S.M., Alford, H.L., Forbes, S.M., Wallace, G., and Smith, S.M., Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis,J. Exp. Bot., 2003, vol. 54, pp. 525–531.

    Article  CAS  PubMed  Google Scholar 

  22. Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon), Mol. Genet. Genomics, 2017, vol. 292, no. 5, pp. 1123–1138.

    Article  CAS  PubMed  Google Scholar 

  23. Spooner, D.M., Fajardo, D., and Salas, A., Revision of the Solanum medians complex (Solanum section Petota), Syst. Bot., 2008, vol. 33, no. 3, pp. 579–588.

    Article  Google Scholar 

  24. Spooner, D.M., Ghislain, M., Simon, R., Jansky, S.H., and Gavrilenko, T., Systematics, diversity, genetics, and evolution of wild and cultivated potatoes, Bot. Rev., 2014, vol. 80, pp. 283–383.

    Article  Google Scholar 

  25. Spooner, D.M., Ruess, H., Arbizu, C.I., Rodriguez, F., and Solis-Lemus, C., Greatly reduced phylogenetic structure in the cultivated potato clade (Solanum section Petota pro parte), Am. J. Bot., 2018, vol. 105, no. 1, pp. 60–70.

    Article  CAS  PubMed  Google Scholar 

  26. Tymowska-Lalanne, Z. and Kreis, M., Expression of the Arabidopsis thaliana invertase gene family, Planta, 1998, vol. 207, no. 2, pp. 259–265.

    Article  CAS  PubMed  Google Scholar 

  27. Wan, H., Wu, L., Yang, Y., Zhou, G., and Ruan, Y.L., Evolution of sucrose metabolism: the dichotomy of invertases and beyond, Trends Plant Sci, 2018, vol. 23, no. 2, pp. 163–177.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.R. Mayorov for providing plant material, as well as E.O. Shmelkova for significant technical assistance in conducting the study.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-016-00108), the Ministry of Science and Higher Education of the Russian Federation, and the Federal Targeted Program for Agricultural Development of the Russian Federation for 2017–2025 (subprogram Development of Selection and Seed Production of Potatoes in the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Slugina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slugina, M.A., Kochieva, E.Z. & Shchennikova, A.V. Polymorphism and Phylogeny of the Vacuolar Invertase Inhibitor Gene INH2 Homologs in Solanaceae Species. Biol Bull Russ Acad Sci 47, 474–481 (2020). https://doi.org/10.1134/S1062359020040111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359020040111

Navigation