Skip to main content
Log in

Modelling and analysis of viscoelastic laminated composite shaft: an operator-based finite element approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to perform dynamic analysis of a viscoelastic laminated composite rotor shaft considering various asymmetries. Equivalent modulus theory (EMT) is employed to derive the finite element based mathematical model of the composite shaft considering the shear effect and compared with other method known as direct procedure technique (DPT). The material damping behaviour of the composite shaft is incorporated using operator-based approach, which leads to a higher-order model. Fibre-reinforced composite sample of single layer and 8 layer are fabricated and tested in dynamic mechanical analyser to obtain frequency-dependent material data and viscoelastic parameters. EMT uses single layer properties, while modelling of DPT is done considering equivalent 8 layer sample. The closeness of numerical results between two methods proves the authentication of the applied EMT for modelling of damped heterogeneous laminated composite shaft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nakra, B.C.: Vibration control in machines and structures using viscoelastic damping. J. Sound Vib. 211(4), 449–465 (1998)

    Article  Google Scholar 

  2. Dimentberg, F.M.: Flexural Vibrations of Rotating Shafts. Butterworths, London (1961)

    Google Scholar 

  3. Grybos, R.: The dynamics of a viscoelastic rotor in flexible bearing. Arch. Appl. Mech. 61, 479–487 (1991)

    Google Scholar 

  4. Roy, H., Dutt, J.K., Datta, P.K.: Dynamics of a viscoelastic rotor shaft using augmenting thermodynamic fields—a finite element approach. Int. J. Mech. Sci. 50(6), 845–853 (2008)

    Article  MATH  Google Scholar 

  5. Friswell, M.I., Dutt, J.K., Adhikari, S., Lees, A.W.: Time domain analysis of a viscoelastic rotor using internal variable models. Int. J. Mech. Sci. 52(17), 1319–1324 (2010)

    Article  Google Scholar 

  6. Dutt, J.K., Roy, H.: Viscoelastic modelling of rotor—shaft systems using an operator-based approach. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(1), 73–87 (2011)

    Article  Google Scholar 

  7. Roy, H., Dutt, J.K., Chandraker, S.: Modeling of multilayered viscoelastic rotors—an operator based approach. J. Vib. Eng. Technol. 2(9), 485–494 (2014)

    Google Scholar 

  8. Roy, H., Chandraker, S., Dutt, J.K., Roy, T.: Dynamics of multilayer, multidisc viscoelastic rotor—an operator based higher order classical model. J. Sound Vib. 369, 87–108 (2016)

    Article  Google Scholar 

  9. Roy, H., Dutt, J.K.: Dynamics of polymer and polymer composite rotors—an operator based finite element approach. Appl. Math. Model. 40(4), 1754–1768 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Roy, H., Chandraker, S.: Dynamic study of viscoelastic rotor: modal analysis of higher order model considering various asymmetries. Mech. Mach. Theory 109, 65–77 (2017)

    Article  Google Scholar 

  11. Roy, H., Chandraker, S.: Dynamic study of viscoelastic rotor: a comparative study using analytical and finite element model considering higher-order system. Arch. Appl. Mech. 88(12), 1243–1261 (2018)

    Article  Google Scholar 

  12. Zinberg, H., Symonds, M.F.: The development of an advanced composite tail rotor driveshaft. In: 26th Annual National Forum of the American Helicopter Society, Washington, DC (1970)

  13. Kim, C., Bert, C.W.: Critical speed analysis of laminated composite, hollow drive shafts. Compos. Eng. 3(7–8), 633–643 (1993)

    Article  Google Scholar 

  14. Singh, S.P., Gupta, K.: Free damped flexural vibration analysis of composite cylindrical tubes using beam and shell theories. J. Sound Vib. 172(2), 171–190 (1994)

    Article  MATH  Google Scholar 

  15. Singh, S.P., Gupta, K.: Composite shaft rotordynamics analysis using a layer wise theory. J. Sound Vib. 191(7), 739–756 (1996)

    Article  Google Scholar 

  16. Chen, L.W., Peng, W.K.: The stability behavior of rotating composite shafts under axial compressive loads. Compos. Struct. 41(3–4), 253–263 (1998)

    Article  Google Scholar 

  17. Chang, M.Y., Chen, J.K., Chang, C.Y.: A simple spinning laminated composite shaft model. Int. J. Solids Struct. 41(3–4), 637–662 (2004)

    Article  MATH  Google Scholar 

  18. Sino, R., Baranger, T.N., Chatelet, E., Jacquet, G.: Dynamic analysis of a rotating composite shaft. Compos. Sci. Technol. 68(2), 337–345 (2008)

    Article  Google Scholar 

  19. Venkatachalam, R., Prabu, S.B.: Vibration and damping analysis of orthotropic sandwich shaft-disc system using finite element method. Int. J. Mech. Mater. Des. 8(4), 287–296 (2012)

    Article  Google Scholar 

  20. Moorthy, R.S., Mitiku, Y., Sridhar, K.: Design of automobile driveshaft using carbon/epoxy and kevlar/epoxy composites. Am. J. Eng. Res. 2(17), 173–179 (2013)

    Google Scholar 

  21. Al-Muslmani, M.: Rotordynamic Analysis of Tapered Composite Driveshaft Using Conventional and Hierarchical Finite Element Formulations. Doctoral Dissertation, Concordia University (2013)

  22. Montagnier, O., Hochard, C.: Dynamics of a supercritical composite shaft mounted on viscoelastic supports. J. Sound Vib. 333(2), 470–484 (2014)

    Article  Google Scholar 

  23. Arab, S.B., Rodrigues, J.D., Bouaziz, S., Haddar, M.: Stability analysis of internally damped rotating composite shafts using a finite element formulation. Comptes Rendus Mécanique 346(6), 291–307 (2018)

    Article  Google Scholar 

  24. Yang, M., Zhou, X., Zhang, W., Ye, J., Hu, Y.: A modifies transfer matrix method for bending vibration of CFRP/Steel composite transmission shafting. Arch. Appl. Mech. 90, 603–614 (2020)

    Article  Google Scholar 

  25. ASTM D4762-04: Standard Guide for Testing Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA (2004). www.astm.org

  26. Rychlewski, J.: On Hooke’s law. J. Appl. Math. Mech. 48(3), 303–314 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Crandall, S.H., Yeh, N.A.: Automatic generation of component modes for rotordynamic substructures. J. Vib. Acoust. Stress Reliab. Des. 111(1), 6–10 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Roy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, K., Roy, H. Modelling and analysis of viscoelastic laminated composite shaft: an operator-based finite element approach. Arch Appl Mech 91, 343–362 (2021). https://doi.org/10.1007/s00419-020-01774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01774-4

Keywords

Navigation