Skip to main content
Log in

Deformation of an elastic membrane interacting electrostatically with a rigid curved domain: implications to biosystems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Deformation of thin elastic sheet due to electrostatic forces play important role in engineering and biological systems. In this work, we analyze the deformation of thin elastic sheet, while interacting with a rigid curved domain in the presence of dielectric fluid. Mechanical deformation of the sheet is coupled with the electrostatic interaction in its equilibrium configuration. We consider small deformation of the sheet, which obeys Hooke’s law. The electrostatic forces acting between the sheet and curved domain are calculated by using Debye–Hückel equation. It is observed that the sheet deformation is proportional to the electrostatic forces acting on it. Increase in inverse Debye length (which signifies the strength of electrostatic field) of the dielectric fluid decreases the sheet deformation. With the help of present model, binding mechanism between peripheral BAR proteins and cell membrane is studied by treating cell membrane as an elastic membrane and BAR protein as a rigid curved domain. For small curvature of BAR protein, the present model captures very well the scaffolding mechanism of protein binding. This model can also be used to analyze problems in electrophotography, powder technology, semiconductor and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mahata, P., Das, S.L.: Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis. FEBS Lett. 591, 1333–1348 (2017)

    Google Scholar 

  2. McMahon, H.T., Boucrot, El: Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015)

    Google Scholar 

  3. Mim, C., Unger, V.M.: Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37(12), 526–533 (2012)

    Google Scholar 

  4. Bassereau, P., Jin, R., Baumgart, T., Deserno, M., Dimova, R., Frolov, V.A., Bashkirov, P.V., Grubmller, H., Jahn, R., Risselada, H.J., Johannes, L., Kozlov, M.M., Lipowsky, R., Pucadyil, T.J., Zeno, W.F., Stachowiak, J.C., Stamou, D., Breuer, A., Lauritsen, L., Simon, C., Sykes, C., Voth, G.A., Weikl, T.R.: The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D Appl. Phys. 51, 343001 (2018)

    Google Scholar 

  5. Kozlov, M.M., Weissenhorn, W., Bassereau, P.: Membrane remodeling: theoretical principles, structures of protein scaffolds and forces involved. From Mol. Living Org. Interplay Between Biol. Phys. Lect. Notes Les Houches Sch. Phys. 102, 287 (2016)

    Google Scholar 

  6. Campelo, F., Kozlov, M.M.: Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 10(4), e1003556 (2014)

    Google Scholar 

  7. Feng, J.Q., Hays, D.A.: Relative importance of electrostatic forces on powder particles. Powder Technol. 135–136, 65–75 (2003)

    Google Scholar 

  8. Schein, L.B.: Electrostatic proximity force, toner adhesion, and a new electrophotographic development system. J. Electrostat. 65, 613–617 (2007)

    Google Scholar 

  9. Vinogradova, O.I., Lebedeva, O.V., Kim, B.-S.: Mechanical behavior and characterization of microcapsules. Annu. Rev. Mater. Res. 36, 143–178 (2006)

    Google Scholar 

  10. Raichur, A., Vörös, J., Textor, M., Fery, A.: Adhesion of polyelectrolyte microcapsules through biotinstreptavidin specific interaction. Biomacromolecules 7, 2331–6 (2006)

    Google Scholar 

  11. Campelo, F., Fabrikant, G., McMahon, H.T., Kozlov, M.M.: Modeling membrane shaping by proteins: focus on EHD2 and N-BAR domains. FEBS Lett. 584(9), 1830–1839 (2010)

    Google Scholar 

  12. Yin, Y., Arkhipov, A., Schulten, K.: Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. Structure 17(6), 882–892 (2009)

    Google Scholar 

  13. Simunovic, M., Voth, G.A., Callan-Jones, A., Bassereau, P.: When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol. 25(12), 780–792 (2015)

    Google Scholar 

  14. Arkhipov, A., Yin, Y., Schulten, K.: Membrane-bending mechanism of amphiphysin N-BAR domains. Biophys. J. 97, 2727–2735 (2009)

    Google Scholar 

  15. Zhu, C., Das, S.L., Baumgart, T.: Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys. J. 102, 1837–1845 (2012)

    Google Scholar 

  16. Cui, H., Mim, C., Vazquez, F.X., Lyman, E., Unger, V.M., Voth, G.A.: Understanding the role of amphipathic helices in N-BAR domain driven membrane remodeling. Biophys. J. 104(2), 404–411 (2013)

    Google Scholar 

  17. Heinrich, M.C., Capraro, B.R., Tian, A., Isas, J.M., Langen, R., Baumgart, T.: Quantifying membrane curvature generation of drosophila amphiphysin N-BAR domains. J. Phys. Chem. Lett. 1(23), 3401–3406 (2010)

    Google Scholar 

  18. Hutchison, J.B., Mudiyanselage, A.P.K.K.K., Weis, R.M., Dinsmore, A.D.: Osmotically-induced tension and the binding of N-BAR protein to lipid vesicles. Soft Matter 12, 2465–2472 (2016)

    Google Scholar 

  19. Yu, H., Schulten, K.: Membrane sculpting by F-BAR domains studied by molecular dynamics simulations. PLoS Comput. Biol. 9(1), 1–15 (2013)

    Google Scholar 

  20. Wang, Q., Navarro, M.V.A.S., Peng, G., Molinelli, E., Goh, S.L., Judson, B.L., Rajashankar, K.R., Sondermann, H.: Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. PNAS 106(31), 12700–12705 (2009)

    Google Scholar 

  21. Kabaso, D., Gongadze, E., Elter, P., van Rienen, U., Gimsa, J., Kralj-Iglic, V., Iglic, A.: Attachment of rod-like (BAR) proteins and membrane shape. Mini-Rev. Med. Chem. 11, 272–282 (2011)

    Google Scholar 

  22. Golestaneh, A.F., Nadler, B.: Modeling of cell adhesion and deformation mediated by receptor-ligand interactions. Biomech. Model. Mechanobiol. 15(2), 371–387 (2016)

    Google Scholar 

  23. Liu, T., Singh, P., Jenkins, J.T., Jagota, A., Bykhovskaia, M., Hui, C.: A continuum model of docking of synaptic vesicle to plasma membrane. J. R. Soc. Interface 12(102), 20141119 (2015)

    Google Scholar 

  24. Sohail, T., Tang, T., Nadler, B.: Adhesive contact of a fluid-filled membrane driven by electrostatic forces. Int. J. Solids Struct. 50, 2678–2690 (2013)

    Google Scholar 

  25. Patil, A., Nordmark, A., Eriksson, A.: Instability investigation on fluid-loaded pre-stretched cylindrical membranes. Proc. R. Soc. A 471, 20150016 (2015)

    Google Scholar 

  26. Wang, X., Yin, L., Yang, Q.: Numerical analysis of the wrinkling behavior of thin membranes. Arch. Appl. Mech. 89, 2361–2380 (2019)

    Google Scholar 

  27. Steigmann, D., Agrawal, A.: Electromechanics of polarized lipid bilayers. Math. Mech. Complex Syst. 4(1), 31–54 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Das, S., Thaokar, R.M.: Large deformation electrohydrodynamics of an elastic capsule in DC electric field. J. Fluid Mech. 841, 489–520 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Das, S., Deshmukh, S.D., Thaokar, R.M.: Deformation of a biconcave-discoid capsule in extensional flow and electric field. J. Fluid Mech. 860, 115–144 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Das, S., Thaokar, R.M.: Large deformation electrohydrodynamics of a Skalak elastic capsule in AC electric field. Soft Matter 14(9), 1719–1736 (2018)

    Google Scholar 

  31. Sinha, K.P., Thaokar, R.M.: Electrohydrodynamics of a compound vesicle under an AC electric field. J. Phys.: Condens. Matter 29(27), 275101 (2017)

    Google Scholar 

  32. Sinha, K.P., Thaokar, R.M.: Effect of AC electric field on the dynamics of a vesicle under shear flow in the small deformation regime. Phys. Rev. E 97, 032404 (2018)

    Google Scholar 

  33. Sreeja, K.K., Sunil Kumar, P.B.: Lipid-protein interaction induced domains: kinetics and conformational changes in multicomponent vesicles. J. Chem. Phys. 148, 134703 (2018)

    Google Scholar 

  34. Olinger, A.D., Spangler, E.J., Sunil Kumar, P.B., Laradji, M.: Membrane-mediated aggregation of anisotropically curved nanoparticles. Faraday Discuss 186, 265–275 (2016)

    Google Scholar 

  35. Spencer, A.J.M.: Continuum Mechanics, 1st edn. Dover Publications Inc., Mineola, New York (2004)

    MATH  Google Scholar 

  36. Campelo, F., McMahon, H.T., Kozlov, M.M.: The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 95(5), 2325–2339 (2008)

    Google Scholar 

  37. Campelo, F., Kozlov, M.M.: Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 10(4), e1003556 (2014)

    Google Scholar 

  38. Donath, E., Budde, A., Knippel, E., Baumler, H.: Hairy surface layer: concept of electrophoresis combined with local fixed surface charge density isothems: application to human erythrocyte electrophoretic fingerprinting. Langmuir 12, 4832–4839 (1996)

    Google Scholar 

  39. Dill, K.A., Bromberg, S.: Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience. Garland Science, New York (2010)

    Google Scholar 

  40. Birdi, K.S.: Surface and Colloid Chemistry. CRC Press, Boca Raton (1997)

    Google Scholar 

  41. Jadidi, T., Seyyed-Allaei, H., Tabar, M.R.R., Mashaghi, A.: Poissons ratio andyoungs modulus of lipid bilayers in different phases. Front. Bioeng. Biotechnol. 2, 1–6 (2014)

    Google Scholar 

  42. Lipowsky, R., Sackmann, E.: Structure and Dynamics of Membranes. Handbook of Biological Physics, vol. 1A. Elsevier, New York (1995)

    MATH  Google Scholar 

  43. Israelachvili, J.N., Mitchell, D.J., Ninham, B.W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2(72), 1525–1568 (1976)

    Google Scholar 

  44. McMahon, H.T., Gallop, J.L.: Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068), 590–596 (2005)

    Google Scholar 

  45. Baumgart, T., Capraro, B.R., Zhu, C., Das, S.L.: Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62, 483–506 (2011)

    Google Scholar 

  46. Smith, A.M., Lee, A.A., Perkin, S.: The electrostatic screening length in concentrated electrolytes increases with concentration. J. Phys. Chem. Lett. 7, 2157–2163 (2016)

    Google Scholar 

  47. Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J.G., Evans, P.R., Langen, R., McMahon, H.T.: Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 303, 2898–2910 (2006)

    Google Scholar 

  48. Gallop, J.L., McMahon, H.T.: BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp. 72, 223–231 (2005)

    Google Scholar 

  49. Weissenhorn, W.: Crystal structure of the endophilin-A1 BAR domain. J. Mol. Biol. 351(3), 653–661 (2005)

    Google Scholar 

Download references

Acknowledgements

P. Mahata acknowledges Dr. Raju Poddar (Department of Bioengineering, BIT Mesra), Dr. Susanta Sinha Mahapatra (Department of Chemistry, BIT Mesra), and Dr. Anup Basak (Department of Mechanical Engineering, IIT Tirupati) for the discussions regarding structural dimensions of proteins, properties of di-electric fluid, and boundary conditions of the membrane sheet. The authors would also like to thank the anonymous referee for pointing out the issue about the boundary conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paritosh Mahata.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Variation of attractive and repulsive forces

The attractive and repulsive forces in z-direction are calculated numerically using Eqs. (33) and (29), respectively. The absolute value of attractive force is maximum near to the pinned support (\(\bar{X} = \pm b/2\)) of the membrane as shown in Fig. 10. The values of the repulsive forces are close to zero along the width of the membrane.

Fig. 10
figure 10

Variation of attractive (\(\bar{f}_{az}\)) and repulsive (\(\bar{f}_{rz}\)) force acting in z-direction of membrane at \(\bar{Y} = 0.5\) for \(\bar{\sigma }_c = 1\) with \(\bar{b} = 0.3\). Other parameter values are \(\bar{H} = 0.01\), \(\theta = \pi \), \(\bar{k} = 1\), \(\bar{R} = 0.15\), \(\bar{t} = 0.04\), and \(\bar{\mu } = 644\)

Appendix B: Variation of traction associated with the membrane tensions

The tractions associated with the membrane tensions \(\bar{p}_x\) and \(\bar{p}_y\) are calculated using Equilibrium Eqs. (38) and (39), respectively. The total electrostatic traction \(\bar{f}_{ex}\) and \(\bar{f}_{ey}\) are obtained from Eqs. (35) and (36), respectively, after calculating integrals \(\bar{f}_{ax}\), \(\bar{f}_{ay}\), \(\bar{f}_{rx}\), and \(\bar{f}_{ry}\) numerically from Eqs. (31)–(32) and (27)–(28). It is observed that the traction \(\bar{p}_x\) does not have significant changes as we approach along the length of the membrane as shown in Fig. 11a.

Fig. 11
figure 11

Variation of traction associated with the membrane tension in a x and b y directions for different values of \(\bar{Y}\). The tractions are depicted in \(x-z\) plane. The parameter values are \(\bar{H} = 0.01\), \(\theta = \pi \), \(\bar{k} = 1\), \(\bar{R} = 0.15\), \(\bar{t} = 0.04\), and \(\bar{\sigma }_c = 1\)

If we do not consider the edge effect of the membrane near \(\bar{Y} = 0\) and 1, then the traction \(\bar{p}_y\) will have almost constant value along the width of the membrane as shown in Fig. 11b. It is more prominent near to the middle of the length of the membrane (i.e., at \(\bar{Y} = 0.5\)). The value of \(\bar{p}_y\) approaches zero near to the middle. It will be equal to zero at \(\bar{Y} = 0.5\) because of symmetry (not shown in figure). As we approach toward the edges of the membrane, the value of \(\bar{p}_y\) increases to maintain the deformation of membrane only in z-direction. Here, negative value of the traction component signifies the opposite nature of it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, P., Vennamneni, L. Deformation of an elastic membrane interacting electrostatically with a rigid curved domain: implications to biosystems. Arch Appl Mech 91, 509–525 (2021). https://doi.org/10.1007/s00419-020-01785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01785-1

Keywords

Navigation