Skip to main content
Log in

Dielectric-Backed Aperture Resonators for X-band Depth-Limited in Vivo EPR Nail Dosimetry

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A new resonant geometry for X-band in vivo electron paramagnetic resonance (EPR) nail dosimetry has been developed, fabricated, and tested. The dielectric-backed aperture resonator (DAR) was specifically designed for depth-limited surface spectroscopy. The DAR improves EPR sensitivity of surface samples with sub-millimeter thicknesses by at least a factor of 20 compared to other aperture resonator designs. The increase in EPR sensitivity was achieved using a non-resonant dielectric slab which is placed on the aperture inside the cavity. The dielectric slab provides an increased microwave magnetic field, while minimizing the problematic resonance conditions of the aperture. It has been shown that the DAR provides sufficient sensitivity to make biologically-relevant measurements both in vitro and in vivo. This work demonstrates that in vivo tests with an equivalent dosimetry sensitivity of approximately 1.4 Gy are feasible. Plausible ways to further increase the sensitivity are discussed, such as, the introduction and simulations of a DAR based on a semi-spherical TE011 geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.A. Alexander, H.M. Swartz, S.A. Amundson, W.F. Blakely, B. Buddemeier, B. Gallez, N. Dainiak, R.E. Goans, R.B. Hayes, P.C. Lowry, BiodosEPR-2006 meeting. Radiat. Meas. 42, 972–996 (2007)

    Article  Google Scholar 

  2. H.M. Swartz, B.B. Williams, A.B. Flood, Radiat. Environ. Biophys. 53, 221–232 (2014)

    Article  Google Scholar 

  3. D.J. Brenner, N.J. Chao, J.S. Greenberger, C. Guha, W.H. McBride, H.M. Swartz, J.P. Williams, Int. J. Radiat. Oncol. 92(3), 504–505 (2015)

    Article  Google Scholar 

  4. M.C.R. Symons, H. Chandra, J.I. Wyatt, Radiat. Prot. Dosim. 58, 11–15 (1995)

    Google Scholar 

  5. B.G. Dalgarno, J.D. McClymont, Appl. Radiat. Isot. 40, 1013–1020 (1989)

    Article  Google Scholar 

  6. A. Romanyukha, F. Trompier, B. LeBlanc, C. Calas, I. Clairand, C.A. Mitchell, J.G. Smirniotopoulos, H.M. Swartz, Radiat. Meas. 42, 1110–1113 (2007)

    Article  Google Scholar 

  7. B.B. Williams, A.B. Flood, I. Salikhov, K. Kobayashi, R. Dong, K. Rychert, G. Du, W. Schreiber, H.M. Swartz, Radiat. Environ. Biophys. 53(2), 335–346 (2014)

    Article  Google Scholar 

  8. H. Xiaoming, S.G. Swarts, E. Demidenko, A.B. Flood, O. Grinberg, J. Gui, M. Mariani, S.D. Marsh, A.E. Ruuge, J.W. Sidabras, D. Tipikin, D.E. Wilcox, H.M. Swartz, Radiat. Prot. Dosim. 159(1–4), 172–181 (2014)

    Google Scholar 

  9. N. Bahar, K. Roberts, F. Stabile, N. Mongillo, R.D. Decker, L.D. Wilson, Z. Husain, J. Contessa, B.B. Williams, A.B. Flood, H.M. Swartz, D.J. Carlson, SU-C-BRD-05. Med. Phys. 42, 3192–3193 (2015)

    Article  Google Scholar 

  10. A. Romanyukha, F. Trompier, R.A. Reyes, D.M. Christensen, C.J. Iddins, S.L. Sugarman, Radiat. Environ. Biophys. 53(4), 755–762 (2014)

    Article  Google Scholar 

  11. A. Marciniak, B. Ciesielski, A. Prawdzik-Dampc, Radiat. Prot. Dosim. 162(1–2), 6–9 (2014)

    Article  Google Scholar 

  12. M. Ikeya, M. Furusawa, Appl. Radiat. Isot. 40(10–12), 845–850 (1989)

    Article  Google Scholar 

  13. H. Ishii, M. Ikeya, Jpn. J. Appl. Phys. 29(1–5), 871–875 (1990)

    Article  ADS  Google Scholar 

  14. H.A. Bethe, Phys. Rev. 66, 163–182 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Levine, J. Schwinger, Phys. Rev. 74(8), 958–974 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Levine, J. Schwinger, Comm. Pure Appl. Math. 4(3), 355–391 (1950)

    Article  Google Scholar 

  17. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  18. M.J. Lockyear, A.P. Hibbins, J.R. Sambles, Appl. Phys. Lett. 91(25), 251106 (2007)

    Article  ADS  Google Scholar 

  19. K. Aydin, A.O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, E. Ozbay, Phys. Rev. Lett. 102(1), 013904 (2009)

    Article  ADS  Google Scholar 

  20. L. Scorrano, F. Bilotti, E. Ozbay, L. Vegni, Appl. Phys. A-Mater. 103(3), 927–931 (2011)

    Article  ADS  Google Scholar 

  21. F.Z. Yang, J.R. Sambles, Phys. Rev. Lett. 89(6), 063901 (2002)

    Article  ADS  Google Scholar 

  22. J.R. Suckling, J. Sambles, C.R. Lawrence, Phys. Rev. Lett. 95(18), 187407 (2005)

    Article  ADS  Google Scholar 

  23. J.R. Suckling, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, New J. Phys. 7(250), 1–11 (2005)

    MathSciNet  Google Scholar 

  24. J.S. Hyde, J.W. Sidabras, R.R. Mett, in Multifrequency Electron Paramagnetic Resonance: Theory and Applications, ed. by S.K. Misra (Wiley, Hoboken, 2011) Chapt. 5.2

  25. M.G. Bini, A. Ignesti, L. Millanta, R. Olmi, N. Rubino, R. Vanni, IEEE Trans. Bio-med. Eng. 31(3), 317–322 (1984)

    Article  Google Scholar 

  26. J.W. Sidabras, S.K. Varanasi, R.R. Mett, S.G. Swarts, H.M. Swartz, J.S. Hyde, Rev. Sci. Instrum. 85, #104707 (2014)

    Article  ADS  Google Scholar 

  27. C.M. Desmet, P. Danhier, S. Acciardo, P. Levêque, B. Gallez, Free Radic. Res. 53(4), 405–410 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Centers for Medical Countermeasures Against Radiation (CMCR) in the National Institute of Allergy and Infectious Diseases (NIAID) in the [Grant Number U19AI091173]; and the National Biomedical Electron Paramagnetic Resonance Center in the National Institute of Biomedical Imaging and Bioengineering (NIBIB) [Grant Number P41EB001980] of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Grinberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinberg, O., Sidabras, J.W., Tipikin, D. et al. Dielectric-Backed Aperture Resonators for X-band Depth-Limited in Vivo EPR Nail Dosimetry. Appl Magn Reson 51, 1093–1101 (2020). https://doi.org/10.1007/s00723-020-01259-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01259-1

Navigation