Skip to main content
Log in

Sprouting Angiogenesis: A Numerical Approach with Experimental Validation

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A functional vascular network is essential to the correct wound healing. In sprouting angiogenesis, vascular endothelial growth factor (VEGF) regulates the formation of new capillaries from pre-existing vessels. This is a very complex process and mathematical formulation permits to study angiogenesis using less time-consuming, reproducible and cheaper methodologies. This study aimed to mimic the chemoattractant effect of VEGF in stimulating sprouting angiogenesis. We developed a numerical model in which endothelial cells migrate according to a diffusion-reaction equation for VEGF. A chick chorioallantoic membrane (CAM) bioassay was used to obtain some important parameters to implement in the model and also to validate the numerical results. We verified that endothelial cells migrate following the highest VEGF concentration. We compared the parameters—total branching number, total vessel length and branching angle—that were obtained in the in silico and the in vivo methodologies and similar results were achieved (p-value smaller than 0.5; n = 6). For the difference between the total capillary volume fractions assessed using both methodologies values smaller than 15% were obtained. In this study we simulated, for the first time, the capillary network obtained during the CAM assay with a realistic morphology and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Del Amo, C., C. Borau, R. Gutiérrez, J. Asín, and J. M. García-Aznar. Quantification of angiogenic sprouting under different growth factors in a microfluidic platform. J. Biomech. 49:1340–1346, 2016.

    Article  Google Scholar 

  2. Bao, P., A. Kodra, M. Tomic-Canic, M. S. Golinko, H. P. Ehrlich, and H. Brem. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153:347–358, 2009.

    Article  CAS  Google Scholar 

  3. Belinha, J. Meshless methods in biomechanics—bone tissue remodelling analysis. New York: Springer, 2014.

    Book  Google Scholar 

  4. Belinha, J., L. M. J. S. Dinis, and R. M. N. Jorge. The analysis of the bone remodelling around femoral stems. Math. Comput. Simul. 121:64–94, 2016.

    Article  Google Scholar 

  5. Bentley, K., H. Gerhardt, and P. A. Bates. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol. 250:25–36, 2008.

    Article  CAS  Google Scholar 

  6. Bookholt, F. D., H. N. Monsuur, S. Gibbs, and F. J. Vermolen. Mathematical modelling of angiogenesis using continuous cell-based models. Biomech. Model. Mechanobiol. 15:1577–1600, 2016.

    Article  CAS  Google Scholar 

  7. Cao, Y., P. Linden, D. Shima, F. Browne, and J. Folkman. In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Investig. 98:2507–2511, 1996.

    Article  CAS  Google Scholar 

  8. Carmeliet, P., and R. K. Jain. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307, 2011.

    Article  CAS  Google Scholar 

  9. Dougherty E. R. and R. A. Lotufo. Hands-on Morphological Image Processing. Bellingham,WA, USA SPIE Publications, 2003

  10. Ferrara, N., H. P. Gerber, and J. LeCouter. The biology of VEGF and its receptors. Nat. Med. 9:669–676, 2003.

    Article  CAS  Google Scholar 

  11. Guest, J. F., N. Ayoub, T. McIlwraith, I. Uchegbu, A. Gerrish, D. Weidlich, K. Vowden, and P. Vowden. Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open 5:e009283, 2015.

    Article  Google Scholar 

  12. Karayiannakis, A. J., A. Zbar, A. Polychronidis, and C. Simopoulos. Serum and drainage fluid vascular endothelial growth factor levels in early surgical wounds. Eur. Surg. Res. 35:492–496, 2003.

    Article  CAS  Google Scholar 

  13. Koch, S., and L. Claesson-Welsh. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502, 2012.

    Article  Google Scholar 

  14. Liu, G. R., and S. S. Quek. The Finite Element Method: A Practical Course. Oxford: Elsevier Science - Butterworth-Heinemann, 2003.

    Google Scholar 

  15. Machado, M. J., M. G. Watson, A. H. Devlin, M. A. Chaplain, S. R. McDougall, and C. A. Mitchell. Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study. Microcirculation 18:183–197, 2011.

    Article  Google Scholar 

  16. De Magalhães, N., L. H. Liaw, and M. Berns. An instruction on the in vivo shell-less chorioallantoic membrane 3-dimensional tumor spheroid model. Cytotechnology 62:279–283, 2010.

    Article  Google Scholar 

  17. Mangir, N., S. Dikici, F. Claeyssens, and S. MacNeil. Using ex Ovo Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomater. Sci. Eng. 5:3190–3200, 2019.

    Article  CAS  Google Scholar 

  18. Matsuya, K., F. Yura, J. Mada, H. Kurihara, and T. Tokihiro. A discrete mathematical model for angiogenesis. SIAM J. Appl. Math. 76:2243–2259, 2016.

    Article  Google Scholar 

  19. Merks R. M. H., S. A. Newman and J. A. Glazier. Cell-Oriented Modeling of In Vitro Capillary Development. In: Cellular Automata: 6th International Conference on Cellular Automata for Research and Industry, ACRI 2004, Amsterdam, The Netherlands, October 25-28, 2004. Proceedings, edited by P. M. A. Sloot, B. Chopard and A. G. Hoekstra. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 425-434.

  20. NIH/National Human Genome Research Institute. (2004, December 10). Researchers Compare Chicken, Human Genomes: Analysis Of First Avian Genome Uncovers Differences Between Birds And Mammals. ScienceDaily. Retrieved July 13, 2020 from www.sciencedaily.com/releases/2004/12/041208230523.htm

  21. Nambiar, D. K., P. K. Kujur, and R. P. Singh. Angiogenesis Assays. In: Cancer Chemoprevention: Methods and Protocols, edited by S. Strano. New York, NY: Springer, 2016, pp. 107–115.

    Chapter  Google Scholar 

  22. Nussbaum, S. R., M. J. Carter, C. E. Fife, J. DaVanzo, R. Haught, M. Nusgart, and D. Cartwright. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21:27–32, 2018.

    Article  Google Scholar 

  23. Obi N. and H. Toda. Human Umbilical Vein Endothelial Cells Migration in Matrigel by the Concentration Gradient of Vascular Endothelial Growth Factor. J Biotechnol Biomater 05: 2015.

  24. Peirce, S. M., E. J. Van Gieson, and T. C. Skalak. Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J. 18:731–733, 2004.

    Article  CAS  Google Scholar 

  25. Peyroteo, M. M. A., J. Belinha, L. M. J. S. Dinis, and R. M. NatalJorge. A new biological bone remodeling in silico model combined with advanced discretization methods. Int. J. Numer. Methods Biomed. Eng. 35:e3196, 2019.

    Article  Google Scholar 

  26. Ribatti, D., B. Nico, A. Vacca, L. Roncali, P. H. Burri, and V. Djonov. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat. Rec. 264:317–324, 2001.

    Article  CAS  Google Scholar 

  27. Scianna, M., E. Bassino, and L. Munaron. A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue. Comput. Biol. Med. 63:143–156, 2015.

    Article  Google Scholar 

  28. Stokes, C. L., and D. A. Lauffenburger. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152:377–403, 1991.

    Article  CAS  Google Scholar 

  29. Sun, S., M. F. Wheeler, M. Obeyesekere, and C. W. Patrick, Jr. A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67:313–337, 2005.

    Article  CAS  Google Scholar 

  30. Sun, S., M. F. Wheeler, M. Obeyesekere, and C. Patrick, Jr. Nonlinear behaviors of capillary formation in a deterministic angiogenesis model. Nonlinear Anal. Theory Methods Appl. 63:e2237–e2246, 2005.

    Article  Google Scholar 

  31. Valdes, T. I., D. Kreutzer, and F. Moussy. The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J. Biomed. Mater. Res. 62:273–282, 2002.

    Article  CAS  Google Scholar 

  32. Vermolen, F. J., and E. Javierre. A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure. J. Math. Biol. 65:967–996, 2011.

    Article  Google Scholar 

  33. Vilanova, G., I. Colominas, and H. Gomez. Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int. J. Numer. Method Biomed. Eng. 29:1015–1037, 2013.

    Article  Google Scholar 

  34. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242–248, 2000.

    Article  CAS  Google Scholar 

  35. Yang, J.-P., H.-J. Liu, and X.-F. Liu. VEGF promotes angiogenesis and functional recovery in stroke rats. J. Invest. Surg. 23:149–155, 2010.

    Article  CAS  Google Scholar 

  36. Yoshida, A., B. Anand-Apte, and B. R. Zetter. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64, 1996.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e Ensino Superior - Fundação para a Ciência e a Tecnologia (Portugal), under Grant SFRH/BD/133894/2017. Additionally, the authors acknowledge the funding provided by LAETA, under project UIDB/50022/2020.

Conflict of interest

Author Ana Guerra, from Institute of Science and Innovation in Mechanical and Industrial Engineering, declare that she has no conflict of interest. Author Jorge Belinha, from School of Engineering, Polytechnic of Porto, declare that he has no conflict of interest. Author Naside Mangir, from Kroto Research Institute and Royal Hallamshire Hospital, declare that she has no conflict of interest. Author Sheila MacNeil, from Kroto Research Institute, declare that she has no conflict of interest. Author Renato Natal Jorge, from Faculty of Engineering of the University of Porto, declare that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Natal Jorge.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, A., Belinha, J., Mangir, N. et al. Sprouting Angiogenesis: A Numerical Approach with Experimental Validation. Ann Biomed Eng 49, 871–884 (2021). https://doi.org/10.1007/s10439-020-02622-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02622-w

Keywords

Navigation