Skip to main content
Log in

A wide-temperature range (77–400 K) CMOS low-dropout voltage regulator system

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, a low-dropout voltage regulator (LDO) system composed of two LDOs, which can operate in the temperature range of 77–400 K, has been developed. Cryogenic and typical transistor models of the 180 nm UMC CMOS process have been employed in the design process. Both LDOs can provide a load current of 100 mA while generating four different output voltage levels (0.9 V, 1.2 V, 1.5 V, 1.8 V). The LDO system provides 70 mV, 60 mV, 60 mV, and 50 mV dropout voltages at 77 K, and 111 mV, 108 mV, 110 mV, and 82 mV dropout voltages at 400 K, for the output voltage levels 0.9 V, 1.2 V, 1.5 V, and 1.8 V, respectively. Post-layout simulation results of the overall LDO system present that the output voltage varies by 30 mV over the  broad range of temperatures from 77 K to 400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Radebaugh, R. (2002). Cryogenic technology resources. https://trc.nist.gov/cryogenics/aboutCryogenics.html Accessed 26 Mar 2020.

  2. Cressler, J. D. (2013). Radiation effects in SiGe technology. IEEE Transactions on Nuclear Science, 60(3), 1992.

    Article  Google Scholar 

  3. Hou, W., Li, S., Geronimo, G. D., & Stanaćević, M. (2018). In 2018 IEEE nuclear science symposium and medical imaging conference proceedings (NSS/MIC) (pp. 1–4).

  4. Homulle, H., & Charbon, E. (2018). Cryogenic low-dropout voltage regulators for stable low-temperature electronics. Cryogenics, 95, 11. https://doi.org/10.1016/j.cryogenics.2018.08.006.

    Article  Google Scholar 

  5. Leng, H., Fu, G., Jiang, M., Wan, B., Zhang, Z. (2018). In 2018 12th international conference on reliability, maintainability, and safety (ICRMS) (pp. 262–265). https://doi.org/10.1109/ICRMS.2018.00056.

  6. Streetman, B. G., & Banerjee, S. K. (2016). Solid state electronic devices (7th ed.). London: Pearson Education Limited.

    Google Scholar 

  7. Incandela, R. M., Song, L., Homulle, H. A. R., Sebastiano, F., Charbon, E., & Vladimirescu, A. (2017). In 2017 47th European solid-state device research conference (ESSDERC) (pp. 58–61). https://doi.org/10.1109/ESSDERC.2017.8066591.

  8. Beckers, A., Jazaeri, F., Bohuslavskyi, H., Hutin, L., Franceschi, S. D., & Enz, C. (2019). Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures. Solid-State Electronics, 159, 106. https://doi.org/10.1016/j.sse.2019.03.033.

    Article  Google Scholar 

  9. Luo, C., Li, Z., Lu, T. T., Xu, J., & Guo, G. P. (2019). MOSFET characterization and modeling at cryogenic temperatures. Cryogenics, 98, 12. https://doi.org/10.1016/j.cryogenics.2018.12.009.

    Article  Google Scholar 

  10. Varizat, L., Sou, G., Mansour, M., Alison, D., & Rhouni, A. (2017). In 2017 IEEE international workshop on metrology for aerospace (MetroAeroSpace) (pp. 74–78). https://doi.org/10.1109/MetroAeroSpace.2017.7999541.

  11. Varizat, L., Sou, G., Mansour, M., & Alison, D. (2018). A cryogenic 0.35 μm CMOS technology BSIM33 model for space instrumentation: Application to a bandgap design. IEEE Aerospace and Electronic Systems Magazine, 33(8), 24. https://doi.org/10.1109/MAES.2018.170149.

    Article  Google Scholar 

  12. Kabaoğlu, A., & Yelten, M. B. (2017). In 2017 14th international conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD) (pp. 1–4). https://doi.org/10.1109/SMACD.2017.7981578

  13. Kabaoğlu, A., Şahin-Solmaz, N., İlik, S., Uzun, Y., & Yelten, M. B. (2019). Statistical MOSFET modeling methodology for cryogenic conditions. IEEE Transactions on Electron Devices, 66(1), 66. https://doi.org/10.1109/TED.2018.2877942.

    Article  Google Scholar 

  14. Kabaoğlu, A., Şahin-Solmaz, N., İlik, S., Uzun, Y., & Yelten, M. B. (2019). Variability-aware cryogenic models of mosfets: Validation and circuit design. Semiconductor Science and Technology, 34(11), 115004. https://doi.org/10.1088/1361-6641/ab3ff9.

    Article  Google Scholar 

  15. Choi, J., Park, J., Jeong, W., Lee, J., Lee, S., Yoon, J., et al. (2009). In 2009 international SoC design conference (ISOCC) (pp. 420–423). https://doi.org/10.1109/SOCDC.2009.5423864.

  16. Souri, K., Chae, Y., Ponomarev, Y., & Makinwa, K. A. A. (2011). In 2011 proceedings of the ESSCIRC (ESSCIRC) (pp. 279–282). https://doi.org/10.1109/ESSCIRC.2011.6044961.

  17. Tuthill, M. (1997). In Proceedings of the 23rd European solid-state circuits conference (pp. 228–231).

  18. Razavi, B. (2001). Design of analog CMOS integrated circuits (1st ed.). New York: McGraw-Hill.

    Google Scholar 

  19. Hilbiber, D. (1964). In 1964 IEEE international solid-state circuits conference. Digest of technical papers (Vol. VII, pp. 32–33). https://doi.org/10.1109/ISSCC.1964.1157541

  20. Malcovati, P., Maloberti, F., Fiocchi, C., & Pruzzi, M. (2001). Curvature-compensated BiCMOS bandgap with 1-V supply voltage. IEEE Journal of Solid-State Circuits, 36(7), 1076. https://doi.org/10.1109/4.933463.

    Article  Google Scholar 

  21. Sun, N., & Sobot, R. (2010). In CCECE 2010 (pp. 1–5). https://doi.org/10.1109/CCECE.2010.5575247.

  22. Cressler, J. D., Crabbe, E. F., Comfort, J. H., Stork, J. M. C., & Sun, J. Y. (1993). On the profile design and optimization of epitaxial Si- and SiGe-base bipolar technology for 77 K applications. II. Circuit performance issues. IEEE Transactions on Electron Devices, 40(3), 542. https://doi.org/10.1109/16.199359.

    Article  Google Scholar 

  23. Annema, A. (1999). Low-power bandgap references featuring DTMOSTs. IEEE Journal of Solid-State Circuits, 34(7), 949. https://doi.org/10.1109/4.772409.

    Article  Google Scholar 

  24. Homulle, H., Sebastiano, F., & Charbon, E. (2018). Deep-cryogenic voltage references in 40-nm CMOS. IEEE Solid-State Circuits Letters, 1(5), 110. https://doi.org/10.1109/LSSC.2018.2875821.

    Article  Google Scholar 

  25. Kayıhan, H. I., Kabaoğlu, A., & Yelten, M. B. (2019). In 2019 11th international conference on electrical and electronics engineering (ELECO) (pp. 392–396). https://doi.org/10.23919/ELECO47770.2019.8990394.

  26. Marasco, K. (2009). How to successfully apply low-dropout regulators. Analog Dialogue, 43, 1–4.

    Google Scholar 

  27. Patoux, J. (2007). Ask the applications engineer, low-dropout regulators. Analog Dialogue, 41, 1–3.

    Google Scholar 

  28. Sinencio, E. S. (2010). Low drop-out (LDO) linear regulators: Design considerations and trends for high power-supply rejection (PSR). IEEE Santa Clara Valley (SCV) Solid State Circuits Society.

  29. Lee, B. S. (1999). Understanding the terms and definitions of LDO voltage regulators. Texas Instruments, Application Report.

Download references

Acknowledgements

This work was sponsored by the Technological Research Council of Turkey under the Project TÜBİTAK 1001 215E080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Berke Yelten.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayıhan, H.İ., İnam, B.B., Doğan, B. et al. A wide-temperature range (77–400 K) CMOS low-dropout voltage regulator system. Analog Integr Circ Sig Process 106, 501–510 (2021). https://doi.org/10.1007/s10470-020-01715-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01715-9

Keywords

Navigation