Skip to main content
Log in

Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Maintaining an adaptive seasonality is a basic ecological requisite for cold-blooded organism insects which usually harbor various symbionts. However, how coexisting symbionts coordinate in insects during seasonal progress is still unknown. The whitefly Bemisia tabaci in China harbors the obligate symbiont Portiera that infects each individual, as well as various facultative symbionts. In this study, we investigated whitefly populations in cucumber and cotton fields from May to December 2019, aiming to reveal the fluctuations of symbiont infection frequencies, symbiont coordination in multiple infected individuals, and host plants effects on symbiont infections. The results indicated that the facultative symbionts Hamiltonella (H), Rickettsia (R), and Cardinium (C) exist in field whiteflies, with single (H) and double (HC and HR) infections occurring frequently. Infection frequencies of Hamiltonella (always 100%) and Cardinium (29.50–34.38%) remained steady during seasonal progression. Rickettsia infection frequency in the cucumber whitefly population decreased from 64.47% in summer to 35.29% in winter. Significantly lower Rickettsia infection frequency (15.55%) was identified in cotton whitefly populations and was not subject to seasonal fluctuation. Nevertheless, Rickettsia had a significantly quantitative advantage in the symbiont community of whitefly individuals and populations from both cucumber and cotton field all through the seasons. Moreover, higher Portiera and Hamiltonella densities were found in HC and HR whitefly than in H whitefly, suggesting these symbionts may contribute to producing nutrients for their symbiont partners. These results provide ample cues to further explore the interactions between coexisting symbionts, the coevolutionary relationship between symbionts and host symbiont–induced effects on host plant use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dicke M, Cusumano A, Poelman EH (2020) Microbial symbionts of parasitoids. Annu Rev Entomol 65:171–190. https://doi.org/10.1146/annurev-ento-011019-024939

    Article  CAS  PubMed  Google Scholar 

  2. Jing X, Wong A, Chaston JM, Colvin J, Mckenzie CL, Douglas A (2014) The bacterial communities in plant phloem sap feeding insects. Mol Ecol 23:1433–1444. https://doi.org/10.1111/mec.12637

    Article  CAS  PubMed  Google Scholar 

  3. Liu XD, Lei HX, Chen FF (2019) Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci Rep 9:4013. https://doi.org/10.1038/s41598-019-40607-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang YC, Cao WJ, Zhong LR, Godfray HCJ, Liu XD (2016) Host plant determines the population size of an obligate symbiont Buchnera aphidicola in aphids. Appl Environ Microbiol 82:2336–2346. https://doi.org/10.1128/AEM.04131-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Renoz F, Pons I, Hance T (2019) Evolutionary responses of mutualistic insect–bacterial symbioses in a world of fluctuating temperatures. Curr Opin Insect Sci 35:20–26. https://doi.org/10.1016/j.cois.2019.06.006

    Article  PubMed  Google Scholar 

  6. Zhu YX, Song YL, Zhang YK, Hoffmann AA, Zhou JC, Sun JT, Hong XY (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl Environ Microbiol 84:e02546–e02517. https://doi.org/10.1128/AEM.02546-17

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goretty MCC, Abraham LM, Thelma C, Julian CAM, David MMS, Aarón B (2019) Analysis of the bacterial communities and endosymbionts of natural populations of Bemisia tabaci in several crop fields from Mexico semi-arid zone. Ann Microbiol 69:909–922. https://doi.org/10.1007/s13213-019-01483-6

    Article  Google Scholar 

  8. Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20:853–868. https://doi.org/10.1111/j.1365-294x.2010.04980.x

    Article  PubMed  Google Scholar 

  9. Pan HP, Li XC, Ge DQ, Wang SL, Wu QJ, Xie W, Jiao XG, Chu D, Liu BM, Xu BY, Zhang YJ (2012) Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS One 7:e30760. https://doi.org/10.1371/journal.pone.0030760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. https://doi.org/10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  11. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256. https://doi.org/10.1126/science.1199410

    Article  CAS  PubMed  Google Scholar 

  12. Bockoven AA, Bondy EC, Flores MJ, Kelly SE, Ravenscraft AM, Hunter MS (2019) What goes up might come down: the spectacular spread of an endosymbiont is followed by its decline a decade later. Microb Ecol 79:482–494. https://doi.org/10.1007/s00248-019-01417-4

    Article  CAS  PubMed  Google Scholar 

  13. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496. https://doi.org/10.1111/mec.12421

    Article  PubMed  Google Scholar 

  14. Santos-Garcia D, Mestre-Rincon N, Zchori-Fein E, Morin S (2020) Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J 14:847–856. https://doi.org/10.1038/s41396-019-0576-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Staudacher H, Kaltenpoth M, Breeuwer JAJ, Menken SBJ, Heckel DG, Groot AT (2016) Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. PLoS One 11:e0154514. https://doi.org/10.1371/journal.pone.0154514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbehenn RV, Constabel CP (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040

    Article  CAS  PubMed  Google Scholar 

  17. Sumi T, Miura K, Miyatake T (2013) No seasonal trend in infection of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), by Wolbachia. Appl Entomol Zool 48:35–38. https://doi.org/10.1007/s13355-012-0152-4

    Article  Google Scholar 

  18. Sumi T, Miura K, Miyatake T (2017) Wolbachia density changes seasonally amongst populations of the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae). PLoS One 12:e0175373. https://doi.org/10.1371/journal.pone.0175373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sumi T, Takahashi Y, Swatani H, Karasawa S, Miura K (2017) Seasonality of Wolbachia infection rate in two closely related sympatric species of terrestrial isopods (Isopoda: Armadillidae) in Okayama, Japan, with effects on sex ratio. J Asia Pac Entomol 20:1096–1103. https://doi.org/10.1016/j.aspen.2017.08.009

    Article  Google Scholar 

  20. Yao I (2018) Seasonal changes in the density of the symbionts Buchnera and Wolbachia of the aphid Tuberculatus macrotuberculatus on Quercus dentata. Entomol Exp Appl 167:261–268. https://doi.org/10.1111/eea.12743

    Article  CAS  Google Scholar 

  21. Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248. https://doi.org/10.1146/annurev-phyto-072910-095235

    Article  CAS  PubMed  Google Scholar 

  22. Fang YW, Liu LY, Zhang HL, Jiang DF, Chu D (2014) Competitive ability and fitness differences between two introduced populations of the invasive whitefly Bemisia tabaci Q in China. PLoS One 9:e100423. https://doi.org/10.1371/journal.pone.0100423

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghosh S, Kanakala S, Lebedev G, Kontsedalov S, Silverman D, Alon T, Mor N, Sela N, Luria N, Dombrovsky A, Mawassi M, Haviv S, Czosnek H, Ghanim M (2019) Transmission of a new polerovirus infecting pepper by the whitefly Bemisia tabaci. J Virol 93: JVI.00488-19. https://doi.org/10.1128/JVI.00488-19

  24. Brumin M, Lebedev G, Kontsedalov S, Ghanim M (2019) Levels of the endosymbiont Rickettsia in the whitefly Bemisia tabaci are influenced by the expression of vitellogenin. Insect Mol Biol 29:241–255. https://doi.org/10.1111/imb.12629

    Article  CAS  PubMed  Google Scholar 

  25. Guo H, Qu Y, Liu X, Zhong W, Fang J (2014) Female biased symbionts and tomato yellow leaf curl virus infections in Bemisia tabaci. PLoS One 9:e84538. https://doi.org/10.1371/journal.pone.0084538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bing XL, Yang J, Zchori-Fein E, Wang XW, Liu SS (2013) Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 79:569–575. https://doi.org/10.1128/AEM.03030-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao DX, Hoffmann AA, Zhang ZC, Niu HT, Guo HF (2018) Interactions between facultative symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera: Aleyrodoidea): cooperation or conflict? J Econ Entomol 111:2660–2666. https://doi.org/10.1093/jee/toy261

    Article  PubMed  Google Scholar 

  28. Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS (2019) The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. P Roy Soc B 286:20191677. https://doi.org/10.1098/rspb.2019.1677

    Article  CAS  Google Scholar 

  29. Su Q, Pan H, Liu B, Chu D, Xie W, Wu Q, Wang S, Xu B, Zhang Y (2013) Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Sci Rep 3:1367. https://doi.org/10.1038/srep01367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hendry TA, Hunter MS, Baltrus DA (2014) The facultative symbiont Rickettsia protects an invasive whitefly against entomopathogenic Pseudomonas syringae strains. Appl Environ Microbiol 80:7161–7168. https://doi.org/10.1128/AEM.02447-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith AH, Łukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, Doll S, Tulttle R, Disciullo RA, Oliver KM, Russell JA (2015) Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol 24:1135–1149. https://doi.org/10.1111/mec.13095

    Article  PubMed  Google Scholar 

  32. Pan HP, Su Q, Jiao XG, Zhou L, Liu BM, Xie W, Wang SL, Wu QJ, Xu BY, Zhang YJ (2013) Relative amount of symbionts in Bemisia tabaci (Gennadius) Q changes with host plant and establishing the method of analyzing free amino acid in B. tabaci. Commun Integr Biol 6:e23397. https://doi.org/10.4161/cib.23397

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brumin M, Levy M, Ghanim M (2012) Transovarial transmission of Rickettsia spp. and organ specific infection of the whitefly Bemisia tabaci. Appl Environ Microbiol 78:5565–5574. https://doi.org/10.1128/AEM.01184-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caspi-Fluger A, Inbar M, Mozes-Daube N, Mouton L, Hunter MS, Zchori-Fein E (2011) Rickettsia “in” and “out”: two different localization patterns of a Bacterial symbiont in the same insect species. PLoS One 6:e21096. https://doi.org/10.1371/journal.pone.0021096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ratzka C, Gross R, Feldhaar H (2012) Endosymbiont tolerance and control within insect hosts. Insects 3:553–572. https://doi.org/10.3390/insects3020553

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang YK, Yang K, Zhu YX, Hong XY (2018) Symbiont conferred reproduction and fitness benefits can favour their host occurrence. Ecol Evol 8:1626–1633. https://doi.org/10.1002/ece3.3784

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brumin M, Kontsedalov S, Ghanim M (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18:57–66. https://doi.org/10.1111/j.1744-7917.2010.01396.x

    Article  Google Scholar 

  38. Hajek AE, Morris EE, Hendry TA (2019) Context-dependent interactions of insects and defensive symbionts: insights from a novel system in siricid woodwasps. Curr Opin Insect Sci 33:77–83. https://doi.org/10.1016/j.cois.2019.03.006

    Article  PubMed  Google Scholar 

  39. Stoll S, Feldhaar H, Fraunholz MJ, Gross R (2010) Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiol 10:308. https://doi.org/10.1186/1471-2180-10-308

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhao DX, Zhang ZC, Niu HT, Guo HF (2019) Selective and stable elimination of endosymbionts from multiple-infected whitefly Bemisia tabaci by feeding on a cotton plant cultured in antibiotic solutions. Insect Sci 00:1–11. https://doi.org/10.1111/1744-7917.12703

    Article  CAS  Google Scholar 

  41. Li H, Harwood JD, Liu T, Chu D (2018) Novel proteome and acetylome of Bemisia tabaci Q in response to Cardinium infection. BMC Genomics 19:523. https://doi.org/10.1186/s12864-018-4907-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li C, He M, Yun Y, Peng Y (2019) Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J Invertebr Pathol 107307:107307. https://doi.org/10.1016/j.jip.2019.107307

    Article  CAS  Google Scholar 

  43. Shi P-Q, Wang L, Liu Y, An X, Chen X-S, Ahmed MZ, Qiu B-L, Sang W (2018) Infection dynamics of endosymbionts reveal three novel localization patterns of Rickettsia during the development of whitefly Bemisia tabaci. FEMS Microbiol Ecol 94: fiy165. https://doi.org/10.1093/femsec/fiy165

  44. Shan HW, Lu YH, Bing XL, Liu SS, Liu YQ (2014) Differential responses of the whitefly Bemisia tabaci symbionts to unfavorable low and high temperatures. Microb Ecol 68:472–482. https://doi.org/10.1007/s00248-014-0424-3

    Article  PubMed  Google Scholar 

  45. McCutcheon JP, Moran NA (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. https://doi.org/10.1038/nrmicro2670

    Article  CAS  PubMed  Google Scholar 

  46. Rao Q, Rollat-Farnier P-A, Zhu D-T, Santos-Garcia D, Silva FJ, Moya A, Latorre A, Klein CC, Vavre F, Sagot M-F, Liu S-S, Mouton L, Wang X-W (2015) Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics 16:226. https://doi.org/10.1186/s12864-015-1379-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C, Hoover K, Felton GW (2017) Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 7:39690. https://doi.org/10.1038/srep39690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Y-H, Ahmed MZ, Li S-J, Lv N, Shi P-Q, Chen X-S, Qiu B-L (2017) Plant-mediated horizontal transmission of Rickettsia endosymbiont between different whitefly species. FEMS Microbiol Ecol 93: fix138. https://doi.org/10.1093/femsec/fix138

  49. Frago E, Dicke M, Godfray HCJ (2012) Insect symbionts as hidden players in insect–plant interactions. Trends Ecol Evol 27:705–711. https://doi.org/10.1016/j.tree.2012.08.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Xiao-Lu Ni of the Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences for help with the collection of B. tabaci populations.

Funding

This study was supported by the National Natural Science Foundation of China (31701797), the Natural Science Foundation of Jiangsu Province, China (BK20170598), and the Key Research and Development Program of Jiangsu Province, China (BE2010342).

Author information

Authors and Affiliations

Authors

Contributions

D.-X. Z. and H.-F. G. conceived and designed the study. D.-X. Z. conducted the experimental work and data analysis. Z.-C. Z. and H.-T. N. participated in experiments. D.-X. Z. and H.-F. G. wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Huifang Guo.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, Z., Niu, H. et al. Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci. Microb Ecol 81, 523–534 (2021). https://doi.org/10.1007/s00248-020-01607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01607-5

Keywords

Navigation