Skip to main content

Advertisement

Log in

Calcitriol attenuates TLR2/IL-33 signaling pathway to repress Th9 cell differentiation and potentially limits the pathophysiology of rheumatoid arthritis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

There is limited information regarding the TLR2 signaling pathway involved in Th9 cell differentiation. The role of calcitriol in regulating TLR2-mediated Th9 cell development is unknown. Thus, we aimed to unravel the TLR2 signaling pathway in Th9 cells and its regulation by calcitriol. We have used n = 5–6 animals for each murine experiment. Human studies involved five healthy volunteers. Moreover, ten healthy individuals and ten RA patients were included in the study. Murine and human Th9 cells were treated with Calcitriol (100 nM) and Pam3CSK4 (2 µg/mL). The number of IL-9+ve cells was determined by flow cytometry. Real-time PCR was used to assess the gene expression. Serum 25(OH)D3 levels were determined by HPLC. We observed that TLR2 signals via IL-33/ST2 in Th9 cells. Increased TLR2 expression associated with increased IL9 expression and augmented disease severity in RA patients. Calcitriol attenuated TLR2 signaling in murine and human Th9 cells. Low serum vitamin D3 level negatively associated with increased IL-9 and TLR2 expression and disease severity in RA patients. Our data suggest a potential role of calcitriol to ameliorate the disease severity of RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TLRs:

Toll-like receptor

RA:

Rheumatoid arthritis

ESR:

Erythrocyte sedimentation rate

CRP:

C-reactive protein

RF:

Rheumatoid factor

25(OH)D3 :

25-Hydroxyvitamin D3; cholecalciferol

1,25(OH)2D3 :

1,25-Dihydroxyvitamin D3; calcitriol

Pam3CSK4 :

Pam3CysSerLys4

TCR:

T cell receptor

IL:

Interleukin

TGF-β:

Transforming growth factor-β

DAS28:

Disease Activity Score of 28 joints

Sfpi1:

Spleen focus forming virus proviral integration site 1

References

  1. Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, Ma L, Yang XO, Nurieva RI, Tian Q (2010) Toll-like receptor 2 signaling in CD4+ T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 32:692–702

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Anwar MA, Basith S, Choi S (2013) Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp Mol Med 45:e11–e11

    PubMed  PubMed Central  Google Scholar 

  3. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    CAS  PubMed  Google Scholar 

  4. Cottalorda A, Mercier BC, Mbitikon-Kobo FM, Arpin C, Teoh DY, McMichael A, Marvel J, Bonnefoy-Bérard N (2009) TLR2 engagement on memory CD8+ T cells improves their cytokine-mediated proliferation and IFN-γ secretion in the absence of Ag. Eur J Immunol 39:2673–2681

    CAS  PubMed  Google Scholar 

  5. Redecke V, Häcker H, Datta SK, Fermin A, Pitha PM, Broide DH, Raz E (2004) Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 172:2739–2743

    CAS  PubMed  Google Scholar 

  6. Reba SM, Li Q, Onwuzulike S, Ding X, Karim AF, Hernandez Y, Fulton SA, Harding CV, Lancioni CL, Nagy N (2014) TLR2 engagement on CD4+ T cells enhances effector functions and protective responses to Mycobacterium tuberculosis. Eur J Immunol 44:1410–1421

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Karim AF, Reba SM, Li Q, Boom WH, Rojas RE (2017) Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function. Eur J Immunol 47:1513–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li C, Li H, Jiang Z, Zhang T, Wang Y, Li Z, Wu Y, Ji S, Xiao S, Ryffel B (2014) Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathogens. https://doi.org/10.1371/journal.ppat.1003918

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Griesenauer B, Paczesny S (2017) The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol 8:475

    PubMed  PubMed Central  Google Scholar 

  11. Chen J, Zhao Y, Jiang Y, Gao S, Wang Y, Wang D, Wang A, Yi H, Gu R, Yi Q (2018) Interleukin-33 contributes to the induction of Th9 cells and antitumor efficacy by dectin-1-activated dendritic cells. Front Immunol 9:1787

    PubMed  PubMed Central  Google Scholar 

  12. Blom L, Poulsen BC, Jensen BM, Hansen A, Poulsen LK (2011) IL-33 induces IL-9 production in human CD4+ T cells and basophils. PLoS ONE 6:e21695

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15:295–307

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu D, Jiang H-R, Li Y, Pushparaj PN, Kurowska-Stolarska M, Leung BP, Mu R, Tay HK, McKenzie AN, McInnes IB (2010) IL-33 exacerbates autoantibody-induced arthritis. J Immunol 184:2620–2626

    CAS  PubMed  Google Scholar 

  15. Chowdhury K, Kumar U, Das S, Chaudhuri J, Kumar P, Kanjilal M, Ghosh P, Sircar G, Basyal RK, Kanga U (2018) Synovial IL-9 facilitates neutrophil survival, function and differentiation of Th17 cells in rheumatoid arthritis. Arthritis Res Therapy 20:18

    Google Scholar 

  16. Ciccia F, Guggino G, Ferrante A, Cipriani P, Giacomelli R, Triolo G (2016) Interleukin-9 and T helper type 9 cells in rheumatic diseases. Clin Exp Immunol 185:125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chimenti M, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R (2015) The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis 6:e1887–e1887

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Seibl R, Birchler T, Loeliger S, Hossle JP, Gay RE, Saurenmann T, Michel BA, Seger RA, Gay S, Lauener RP (2003) Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 162:1221–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Koike T (2015) Treatment of rheumatoid arthritis by molecular-targeted agents: efficacy and limitations. J Orthop Sci 20:951–957

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Merlino LA, Curtis J, Mikuls TR, Cerhan JR, Criswell LA, Saag KG (2004) Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women's Health Study. Arthritis Rheu 50:72–77

    CAS  Google Scholar 

  21. Cantorna MT, Hayes CE, DeLuca HF (1998) 1, 25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 128:68–72

    CAS  PubMed  Google Scholar 

  22. Zwerina K, Baum W, Axmann R, Heiland GR, Distler JH, Smolen J, Hayer S, Zwerina J, Schett G (2011) Vitamin D receptor regulates TNF-mediated arthritis. Ann Rheum Dis 70:1122–1129

    CAS  PubMed  Google Scholar 

  23. Kostoglou-Athanassiou I, Athanassiou P, Lyraki A, Raftakis I, Antoniadis C (2012) Vitamin D and rheumatoid arthritis. Therap Adv Endocrinol Metab 3:181–187

    Google Scholar 

  24. Vyas SP, Hansda AK, Kaplan MH, Goswami R (2020) Calcitriol regulates the differentiation of IL-9-secreting Th9 cells by modulating the transcription factor PU 1. J Immunol 204:1401

    Google Scholar 

  25. Re F, Strominger JL (2001) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 276:37692–37699

    CAS  PubMed  Google Scholar 

  26. Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, Yoon D, Kong J, Thadhani R, Li YC (2013) 1, 25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting MicroRNA-155–SOCS1 in macrophages. J Immunol 190:3687–3695

    CAS  PubMed  Google Scholar 

  27. Chang H-C, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi A-N, Han L (2010) The transcription factor PU. 1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Takami M, Fujimaki K, Nishimura MI, Iwashima M (2015) Cutting edge: AhR is a molecular target of calcitriol in human T cells. J Immunol 195:2520–2523

    CAS  PubMed  Google Scholar 

  29. Ojaimi S, Skinner NA, Strauss BJ, Sundararajan V, Woolley I, Visvanathan K (2013) Vitamin D deficiency impacts on expression of toll-like receptor-2 and cytokine profile: a pilot study. J Transl Med 11:176

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfeffer PE, Chen Y-H, Woszczek G, Matthews NC, Chevretton E, Gupta A, Saglani S, Bush A, Corrigan C, Cousins DJ (2015) Vitamin D enhances production of soluble ST2, inhibiting the action of IL-33. J Allergy Clin Immunol 135(824–827):e823

    Google Scholar 

  31. Matsuyama Y, Okazaki H, Tamemoto H, Kimura H, Kamata Y, Nagatani K, Nagashima T, Hayakawa M, Iwamoto M, Yoshio T (2010) Increased levels of interleukin 33 in sera and synovial fluid from patients with active rheumatoid arthritis. J Rheumatol 37:18–25

    CAS  PubMed  Google Scholar 

  32. Nyirenda MH, Morandi E, Vinkemeier U, Constantin-Teodosiu D, Drinkwater S, Mee M, King L, Podda G, Zhang G-X, Ghaemmaghami A (2015) TLR2 stimulation regulates the balance between regulatory T cell and Th17 function: a novel mechanism of reduced regulatory T cell function in multiple sclerosis. J Immunol 194:5761–5774

    CAS  PubMed  Google Scholar 

  33. Loiarro M, Ruggiero V, Sette C (2010) Targeting TLR/IL-1R signalling in human diseases. Mediators Inflamm 2010:674363

    PubMed  PubMed Central  Google Scholar 

  34. Miller AM (2011) Role of IL-33 in inflammation and disease. J Inflamm 8:22

    CAS  Google Scholar 

  35. Polumuri SK, Jayakar GG, Shirey KA, Roberts ZJ, Perkins DJ, Pitha PM, Vogel SN (2012) Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists. J Immunol 189:50–60

    CAS  PubMed  Google Scholar 

  36. Ganesan S, Pham D, Jing Y, Farazuddin M, Hudy MH, Unger B, Comstock AT, Proud D, Lauring AS, Sajjan US (2016) TLR2 Activation limits rhinovirus-stimulated CXCL-10 by attenuating IRAK-1-dependent IL-33 receptor signaling in human bronchial epithelial cells. J Immunol 197:2409–2420

    CAS  PubMed  Google Scholar 

  37. Goswami R, Kaplan MH (2011) A brief history of IL-9. J Immunol 186:3283–3288

    CAS  PubMed  Google Scholar 

  38. Jash A, Sahoo A, Kim G-C, Chae C-S, Hwang J-S, Kim J-E, Im S-H (2012) Nuclear factor of activated T cells 1 (NFAT1)-induced permissive chromatin modification facilitates nuclear factor-κB (NF-κB)-mediated interleukin-9 (IL-9) transactivation. J Biol Chem 287:15445–15457

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y-H, Yu Z, Fu L, Wang H, Chen X, Zhang C, Lv Z-M, Xu D-X (2015) Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin D receptor and nuclear factor kappa B p65 subunit. Sci Rep 5:10871

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lacerte P, Brunet A, Egarnes B, Duchêne B, Brown JP, Gosselin J (2016) Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Res Therapy 18:10

    Google Scholar 

  41. Iwahashi M, Yamamura M, Aita T, Okamoto A, Ueno A, Ogawa N, Akashi S, Miyake K, Godowski PJ, Makino H (2004) Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 50:1457–1467

    CAS  PubMed  Google Scholar 

  42. Carriere V, Roussel L, Ortega N, Lacorre D-A, Americh L, Aguilar L, Bouche G, Girard J-P (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci 104:282–287

    CAS  PubMed  Google Scholar 

  43. Xu D, Jiang H-R, Kewin P, Li Y, Mu R, Fraser AR, Pitman N, Kurowska-Stolarska M, McKenzie AN, McInnes IB (2008) IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci 105:10913–10918

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Palmer G, Talabot-Ayer D, Lamacchia C, Toy D, Seemayer CA, Viatte S, Finckh A, Smith DE, Gabay C (2009) Inhibition of interleukin-33 signaling attenuates the severity of experimental arthritis. Arthritis Rheum 60:738–749

    CAS  PubMed  Google Scholar 

  45. Dantas AT, Marques CDL, da Rocha Junior LF, Cavalcanti MB, Gonçalves SMC, Cardoso PRG, Mariz HDA, Rego MJBDM, Duarte ALBP, Pitta IDR (2015) Increased serum interleukin-9 levels in rheumatoid arthritis and systemic lupus erythematosus: pathogenic role or just an epiphenomenon? Dis Markers 2015:519638

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SPV designed and performed the experiments, analyzed the data and wrote the manuscript. RG analyzed the data and wrote the manuscript. RNS provided the healthy and patients’ serum samples. RG also acknowledges Sudeepti Ratan Srivastava, King George’s Medical University, Lucknow for her assistance with the clinical samples. The flow cytometer and HPLC of the Central Research Facility, IIT Kharagpur is also acknowledged.

Funding

SPV acknowledges CSIR-UGC, Government of India Senior Research Fellowship. RG acknowledges DST-INNO-INDIGO (DST/IMRCD/EU/Inno Indigo/RA Detect/2015 (G)) and SERB (YSS/2015/001147), Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritobrata Goswami.

Ethics declarations

Conflict of interest

No conflict of interest is declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, S.P., Srivastava, R.N. & Goswami, R. Calcitriol attenuates TLR2/IL-33 signaling pathway to repress Th9 cell differentiation and potentially limits the pathophysiology of rheumatoid arthritis. Mol Cell Biochem 476, 369–384 (2021). https://doi.org/10.1007/s11010-020-03914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03914-4

Keywords

Navigation