Skip to main content
Log in

Toxic Impacts of Amorphous Silica Nanoparticles on Liver and Kidney of Male Adult Rats: an In Vivo Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The toxic effects of the amorphous silica nanoparticles have not been thoroughly studied. Moreover, the majority of the in vivo investigations were performed using an inhalation exposure method. The current study aimed to explore the potential toxic effects of silica nanoparticles (SiNPs) after the treatment of adult male rats with two different concentrations (500 and 1000 ppm) via drinking water for 28 days. The genotoxicity, antioxidant status, and liver and kidney functions were assessed. Besides, histopathological and immunohistochemical evaluations were performed. The results showed a significant elevation in the malondialdehyde (MDA) level concurrent with a reduction in total reduced glutathione (GSH) concentration and catalase activity in the 1000-ppm SiNP-exposed rats as well as increase in ALT and AST activity confirmed by various histopathological alterations detected in liver. Also, in the 1000-ppm SiNP-exposed animals, there was an elevation in urea and creatinine levels confirmed by histopathological alterations detected in kidneys. Immunohistochemical findings in both liver and kidneys indicated strong expression of caspase-3 in the 1000-ppm SiNP-treated rats compared with the control and 500-ppm SiNP-treated groups. Such findings indicated that the 1000-ppm SiNPs exerted severe hepato-renal toxic impacts when compared with the control and 500-ppm SiNP-exposed rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kasaai MR (2015) Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J Nanotechnol 2015:1–6. https://doi.org/10.1155/2015/852394

    Article  CAS  Google Scholar 

  2. Brinch A, Hansen S, Hartmann N, Baun A (2016) EU regulation of nanobiocides: challenges in implementing the biocidal product regulation (BPR). Nanomaterials 6:33. https://doi.org/10.3390/nano6020033

    Article  CAS  PubMed Central  Google Scholar 

  3. Yang X, Liu X, Zhang A, Lu D, Li G, Zhang Q, Liu Q, Jiang G (2019) Distinguishing the sources of silica nanoparticles by dual isotopic fingerprinting and machine learning. Nat Commun 10:1620. https://doi.org/10.1038/s41467-019-09629-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu Y, Li Y, Wang W, Jin M, Du Z et al (2013) Acute toxicity of amorphous silica nanoparticles in intravenously exposed ICR mice. PLoS ONE 8(4):e61346. https://doi.org/10.1371/journal.pone.0061346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oh S, Kim B, Kim H (2014) Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities. Ind Health 52:190–198. https://doi.org/10.2486/indhealth.2013-0117

    Article  PubMed  PubMed Central  Google Scholar 

  7. Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29(9):1–51

    Google Scholar 

  8. Murugadoss S, Lison D, Godderis L, Brule SV, Mast J et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ying N, LiZhu X, Chang B, Tong Z, Cao W et al., (2016) Nanosilica and polyacrylate/nanosilica: a comparative study of acute toxicity. BioMed Res Int Volume Article ID 9353275, 7 pages

  10. Aillon KL, Xie Y, el-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun L, Li Y, Liu X, Jin M, Zhang L, du Z, Guo C, Huang P, Sun Z (2011) Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol in Vitro 25:1619–1629. https://doi.org/10.1016/j.tiv.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Meng H, Xing G, Yuan H, Zhao F, Liu R, Chang X, Gao X, Wang T, Jia G, Ye C, Chai Z, Zhao Y (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42(23):8985–8992

    Article  CAS  PubMed  Google Scholar 

  13. Shang Y, Zhu T, Li Y, Zhao JC (2009) Size-dependenthydroxyl radicals generation induced by SiO2 ultra-fine particles: the role of surfaceiron. Sci China Series B:Chem 52(7):1033–1041

    Article  CAS  Google Scholar 

  14. Chen Y, Chen J, Dong J, Jin Y (2004) Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenesis in rats. Toxicol Ind Health 20(1–5):21–27

    Article  CAS  PubMed  Google Scholar 

  15. Van der Zande M, Vandebriel RJ, Groot MJ et al (2014) Subchronic toxicity study in rats orally exposed to nanostructured silica. Particle Fibre Toxicol 11(8)

  16. Chen M, Von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62

    Article  CAS  PubMed  Google Scholar 

  17. Choi J, Zheng Q, Katz HE, Guilarte TR (2010) Silica based nanoparticle uptake and cellular response by primary microglia. Environ Health Perspect 118(5):589–595

    Article  CAS  PubMed  Google Scholar 

  18. Lin WYW, Huang X, Zhou D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259

    Article  CAS  PubMed  Google Scholar 

  19. Yang XF, Liu JJ, He HW et al (2010) SiO 2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Particle FibreToxicol 7(1)

  20. Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO 2) on Mytilus hemocytes. Aquat Toxicol 96:151–158

    Article  CAS  PubMed  Google Scholar 

  21. Sadek A, Soliman M, Marzouk M (2014) Ameliorative effect of Allolobophora caliginosa extract on hepatotoxicity induced by silicon dioxide nanoparticles. Toxicol Ind Health 32(8):1358–1372

    Article  PubMed  CAS  Google Scholar 

  22. Henry EH, Jenness BM, Debbie S (1997) A direct comparison of mouse and rat bone marrow and blood as target tissues in the micronucleus assay. Mutat Res/Genet Toxicol Environ Mutagen 391(1–2):87–89

    Google Scholar 

  23. Ohkawa H, Ohishi W, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  24. Beutler E, Duron O, Kelly BM (1963) Improved methods for the determination of glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  25. Fossati P, Prencipe L, Berti G (1980) Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–237

    Article  CAS  PubMed  Google Scholar 

  26. Reitman S, Frankel S (1957) Colorimetric determination of serum oxalacetic and glutamic pyruvic transaminase. Amer J Clin Pathol 28:56–63

    Article  CAS  Google Scholar 

  27. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schirmeister J, Willmann H, Kiefer H (1964) Plasma creatinine as rough indicator of renal function. Dtsch Med Wochenschr 89:1018–1023

    Article  CAS  PubMed  Google Scholar 

  29. Bancroft D, Stevens A, Turner R (2012) Theory and practice of histological technique, 4th edn. Churchill, Livingstone

    Google Scholar 

  30. Ahmed KA, Korany RMS, El-Halawany HA, Ahmed KS (2019) Spirulina platensis alleviates arsenic-induced toxicity in male rats: biochemical, histopathological and immunohistochemical studies. Adv Anim Vet Sci 7(8):701–710

    Article  Google Scholar 

  31. Korany RMS, Ahmed KS, Halawany HA, Ahmed KA (2019) Effect of long-term arsenic exposure on female Albino rats with special reference to the protective role of Spirulina platensis. Explor Anim Med Res 9(2):125–136

    Google Scholar 

  32. Fattin SM, Abd ElSalam NF, Bahaa N, Baher W (2017) Effect of silica oxide nanoparticles on liver of adult male albino rat. Light and electron microscopic study. Egypt J Histol 40(3):345–361

    Article  Google Scholar 

  33. Park HJ, Chung HE, Lee JA et al (2014) Quantitative determination of silica nanoparticles in biological matrices and their pharmacokinetics and toxicokinetics in rats. Sci Adv Mater 6(6):1605–1610. https://doi.org/10.1166/sam.2014.1817

    Article  CAS  Google Scholar 

  34. Çomelekoglu U, Balli E, Yalin S, Eroglu P, Bayrak G, Yaman S, Sogut F (2019) Effects of different sizes silica nanoparticle on the liver, kidney and brain in rats: Biochemical and histopathological evaluation. J Res Pharm 23(3):344–353

    Google Scholar 

  35. Azouz RA, AbuBakr HO, Khattab MS, Abou-Zeid SM. (2020) Buprofezin toxication implicates health hazards in Nile tilapia (Oreochromis niloticus). Aqac Res 00:1–12

  36. Gong C, Tao G, Yang L et al (2012) The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Mol Biol Rep 39:4915–4925. https://doi.org/10.1007/s11033-011-1287-z

    Article  CAS  PubMed  Google Scholar 

  37. Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology. 3:355–364

    Article  CAS  Google Scholar 

  38. Nabeshi HT, Yoshikawa K, Matsuyama Y, Nakazato S, Tochigi S et al (2011) Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Du Z, Zhao D, Jing L et al (2013) Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol 13:194–207. https://doi.org/10.1007/s12012-013-9198-y

    Article  CAS  PubMed  Google Scholar 

  40. Parveen A, Rizvi SHM, Sushma et al (2015) Intranasal exposure to silica nanoparticles induce alterations in pro-inflammatory environment of rat brain: involvement of oxidative stress. Toxicol Ind Health 33:119–132. https://doi.org/10.1177/0748233715602985

    Article  CAS  Google Scholar 

  41. Kim YJ, Yu M, Park HO, Yang SI (2010) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by silica nanomaterials in human neuronal cell line. Mol Cell Toxicol 6:336–343

    Article  CAS  Google Scholar 

  42. Passagne I, Morille M, Rousset M, Pujalte I, L’Azou B (2012) Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology 299:112–124

    Article  CAS  PubMed  Google Scholar 

  43. Duan J, Yu Y, Li Y, Yu Y, Li Y, Zhou X, Huang P, Sun Z (2013) Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS ONE 8:e62087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kong XH, Wang GZ, Li SJ (2007) Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress. Chin J Oceanol Limnol 25:221–226

    Article  CAS  Google Scholar 

  45. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, Ahmad I (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276:95–102

    Article  CAS  PubMed  Google Scholar 

  46. Durairaj A, Vaiyapuri TS, Kanti MU et al (2008) Protective activity and antioxidant potential of Lippia nodiflora extract in paracetamol induced hepatotoxicity in rats. Iran J Pharmacol Ther 7:83–89

    CAS  Google Scholar 

  47. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Zhou G, Chen C et al (2007) Acute toxicity and biodistribution of different-sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  PubMed  Google Scholar 

  49. Liu T, Li L, Teng X et al (2011) Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenouslyexposedmice. Biomaterials 32:1657–1668

    Article  CAS  PubMed  Google Scholar 

  50. Fu C, Liu T, Tang F, Chen D, Li LL, Liu HY, Li XM (2012) Acute toxicity and oxidative damage induced by silica nanorattle in vivo. Chin Sci Bull 57:2525–2532

    Article  CAS  Google Scholar 

  51. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, Prasad PN (2010) In vivo bio distribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee S, Kim M, Lee D, Kwon TK, Khang D, Yun H, Kim S (2013) The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice. Int J Nanomedicine 8:147–158

    PubMed  PubMed Central  Google Scholar 

  53. So SJ, Jang IS, Han CS (2008) Effect of micro/nano silica particle feeding for mice. J Nanosci Nanotechnol 8(10):5367–5371

    Article  CAS  PubMed  Google Scholar 

  54. Ye Y, Liu J, Chen M, Sun L, Lan M (2010) In vitro toxicity of silica nanoparticles in myocardial cells. Environ Toxicol Pharmacol 29:131–137

    Article  CAS  PubMed  Google Scholar 

  55. Lai LC, Qian X, Ming CW, Jin F, Na Na S, Peng ZX, Ning LY, Hui Y et al (2018) Subchronic oral toxicity of silica nanoparticles and silica microparticles in rats. Biomed Environ Sci 31(3):197–207

    Google Scholar 

  56. Naziroglu M, Karaoglu A, Aksoy AO (2004) Selenium and higher dose vitamin E administration protects cisplatin induced oxidative damage to renal, liver, lens tissues in rats. Toxicology 195:221–230

    Article  CAS  PubMed  Google Scholar 

  57. Hassankhani R, Esmaeillou M, Tehrani AA et al (2014) In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-3413-7

  58. Lee J, Kim M, Paek H, Kim Y, Kim M, Lee J, Jeong J, Choi S (2014) Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int J Nanomedicine 9:251–260

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Park EJ, Park K (2009) Oxidative stress and proinflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the planning of the study and drafting the manuscript. All of them approve the final version of the article.

Corresponding author

Correspondence to Rehab A. Azouz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethical Approval

This study was approved by the Animal Use and Care Committee at Faculty of Veterinary Medicine, Cairo University, Egypt. This study was performed after receiving ethical approval number.

Consent for publication

All authors have reviewed the manuscript and approved its submission for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azouz, R.A., Korany, R.M.S. Toxic Impacts of Amorphous Silica Nanoparticles on Liver and Kidney of Male Adult Rats: an In Vivo Study. Biol Trace Elem Res 199, 2653–2662 (2021). https://doi.org/10.1007/s12011-020-02386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02386-3

Keywords

Navigation