Skip to main content
Log in

Enhancement of Galactose Uptake from Kappaphycus alvarezii Hydrolysate Using Saccharomyces cerevisiae Through Overexpression of Leloir Pathway Genes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A total 42.68 g/L monosaccharide with 0.10 g/L HMF was obtained from 10% (w/v) Kappaphycus alvarezii with thermal acid hydrolysis using 350 mM HNO3 at 121 °C for 60 min and enzymatic saccharification with a 1:1 mixture of Viscozyme L and Celluclast 1.5 L for 72 h. To enhance the galactose utilization rate, fermentation was performed with overexpression of GAL1 (galactokinase), GAL7 (galactose-1-phosphate uridyltransferase), GAL10 (UDP-glucose-4-epimerase), and PGM2 (phosphoglucomutase 2) in Saccharomyces cerevisiae CEN.PK2 using CCW12 as a strong promoter. Among the strains, the overexpression of PGM2 showed twofold high galactose utilization rate (URgal) and produced ethanol 1.4-fold more than that of the control. Transcriptional analysis revealed the increase of PGM2 transcription level leading to enhance glucose-6-phosphate and fructose-6-phosphate and plays a key role in ensuring a higher glycolytic flux in the PGM2 strain. This finding shows particular importance in biofuel production from seaweed because galactose is one of the major monosaccharides in seaweeds such as K. alvarezii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vassilev, S. V., & Vassileva, C. G. (2016). Composition, properties and challenges of algae biomass for biofuel application: an overview. Fuel, 181, 1–33.

    Article  CAS  Google Scholar 

  2. Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91, 165–179.

    Article  Google Scholar 

  3. Ra, C. H., Nguyen, T. H., Jeong, G. T., & Kim, S. K. (2016). Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresource Technology, 209, 66–72.

    Article  CAS  Google Scholar 

  4. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.), 337(6096), 816–821.

    Article  CAS  Google Scholar 

  5. DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 41(7), 4336–4343.

    Article  CAS  Google Scholar 

  6. Zhang, G.-C., Kong, I. I., Kim, H., Liu, J.-J., Cate, J. H. D., & Jin, Y.-S. (2014). Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Applied and Environmental Microbiology, 80(24), 7694–7701.

    Article  Google Scholar 

  7. Tsai, C.-S., Kong, I. I., Lesmana, A., Million, G., Zhang, G.-C., Kim, S. R., & Jin, Y.-S. (2015). Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR. Biotechnology and Bioengineering, 112(11), 2406–2411.

    Article  CAS  Google Scholar 

  8. Ostergaard, S., Roca, C., Rønnow, B., Nielsen, J., & Olsson, L. (2000). Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene. Biotechnology and Bioengineering, 68(3), 252–259.

    Article  CAS  Google Scholar 

  9. Lee, K.-S., Hong, M.-E., Jung, S.-C., Ha, S.-J., Yu, B. J., Koo, H. M., Park, S. M., Kweon, D. H., Park, J. C., & Jin, Y.-S. (2011). Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnology and Bioengineering, 108(3), 621–631.

    Article  CAS  Google Scholar 

  10. Frey, P. A. (1996). The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB Journal, 10(4), 461–470.

    Article  CAS  Google Scholar 

  11. Howard, S. M., & Heinrich, M. R. (1965). The anomeric specificity of yeast galactokinase. Archives of Biochemistry and Biophysics, 110(2), 395–400.

    Article  CAS  Google Scholar 

  12. Segawa, T., & Fukasawa, T. (1979). The enzymes of the galactose cluster in Saccharomyces cerevisiae. Purification and characterization of galactose-1-phosphate uridylyltransferase. The Journal of Biological Cheimistry, 254(21), 10707–10709.

    Article  CAS  Google Scholar 

  13. Nogi, Y., & Fukasawa, T. (1980). A novel mutation that affects utilization of galactose in Saccharomyces cerevisiae. Current Genetics, 2(2), 115–120.

    Article  CAS  Google Scholar 

  14. Bro, C., Knudsen, S., Regenberg, B., Olsson, L., & Nielsen, J. (2005). Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Applied and Environmental Microbiology, 71(11), 6465–6472.

    Article  CAS  Google Scholar 

  15. Marinho-Soriano, E., Fonseca, P. C., Carneiro, M. A. A., & Moreira, W. S. C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402–2406.

    Article  CAS  Google Scholar 

  16. Ra, C. H., Kim, Y. J., Lee, S. Y., Jeong, G. T., & Kim, S. K. (2015). Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Bioprocess and Biosystems Engineering, 38(9), 1715–1722.

    Article  CAS  Google Scholar 

  17. Bae, Y.-H., Kweon, D.-H., Park, Y.-C., & Seo, J.-H. (2014). Deletion of the HXK2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions. Process Biochemistry, 49(4), 547–553.

    Article  CAS  Google Scholar 

  18. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  Google Scholar 

  19. Hong, I. K., Jeon, H., & Lee, S. B. (2014). Comparison of red, brown and green seaweeds on enzymatic saccharification process. Journal of Industrial and Engineering Chemistry, 20(5), 2687–2691.

    Article  CAS  Google Scholar 

  20. Kim, I., Lee, B., Park, J. Y., Choi, S. A., & Han, J. I. (2014). Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydrate Polymers, 99, 563–567.

    Article  CAS  Google Scholar 

  21. Tutt, M., Kikas, T., & Olt, J. (2012). Influence of different pretreatment methods on bioethanol production from wheat straw. Agonomy Research, Biosystems Engineering Special Issue, 1, 209–276.

    Google Scholar 

  22. Antonetti, C., Licursi, D., Fulignati, S., Valentini, G., & Raspolli Galletti, A. (2016). New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts, 6(12), 196.

    Article  Google Scholar 

  23. Rodríguez, A., De La Cera, T., Herrero, P., & Moreno, F. (2001). The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. The Biochemical Journal, 355(3), 625–631.

    Article  Google Scholar 

  24. Li, C., Wang, Q., & Zhao, Z. K. (2008). Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chemistry, 10(2), 177–182.

    Article  CAS  Google Scholar 

  25. Rodríguez-Chong, A., Ramírez, J. A., Garrote, G., & Vázquez, M. (2004). Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. Journal of Food Engineering, 61(2), 143–152.

    Article  Google Scholar 

  26. Ahn, D. J., Kim, S. K., & Yun, H. S. (2012). Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 35(1–2), 35–41.

    Article  CAS  Google Scholar 

  27. Garcia Sanchez, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2010). PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microbial Cell Factories, 9, 1–8.

    Article  Google Scholar 

  28. De Jongh, W. A., Bro, C., Ostergaard, S., Regenberg, B., Olsson, L., & Nielsen, J. (2008). The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 101(2), 317–326.

    Article  Google Scholar 

  29. Gonçalves, P. M., Griffioen, G., Paul Bebelman, J., & Planta, R. J. (1997). Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast. Molecular Microbiology, 25(03), 483–493.

    Article  Google Scholar 

  30. Timson, D. J. (2007). Galactose metabolism in Saccharomyces cerevisiae. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 1(1), 63–73.

    Google Scholar 

  31. Ostergaard, S., Olsson, L., & Nielsen, J. (2001). In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: metabolic fluxes and metabolite levels. Biotechnology and Bioengineering, 73(5), 412–425.

    Article  CAS  Google Scholar 

  32. Lowry, O. H., & Passonneau, J. V. (1969). Phosphoglucomutase kinetics with the phosphates of fructose, glucose, mannose, ribose, and galactose. Journal of Biological Chemistry, 244(4), 910–916.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1F1A1041288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunwoo, I.Y., Sukwong, P., Park, Y.R. et al. Enhancement of Galactose Uptake from Kappaphycus alvarezii Hydrolysate Using Saccharomyces cerevisiae Through Overexpression of Leloir Pathway Genes. Appl Biochem Biotechnol 193, 335–348 (2021). https://doi.org/10.1007/s12010-020-03422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03422-7

Keywords

Navigation