Skip to main content

Advertisement

Log in

Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The polyhydroxyalkanoates (PHA) are family of biopolyesters synthesized by numerous bacteria which are attracting a great attention due to their thermoplastic properties. Polyhydroxybutyrate (PHB) is the most common type of PHA which presents thermoplastic and biodegradable properties. It is synthesized under stressful conditions by heterotrophic bacteria and many photosynthetic microorganisms such as purple non-sulfur bacteria and cyanobacteria. Biological hydrogen (H2) production is being evaluated for use as a fuel since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific content. In the present work, the purple non-sulfur photosynthetic bacterium Rhodopseudomonas sp. for the simultaneous H2 photo-evolution and poly-β-hydroxybutyrate (PHB) production has been investigated. Three different types of carbon sources were tested in the presence of glutamate as a nitrogen source in a batch cultivation system, under continuous irradiance. The results indicated the fact that the type of carbon source in the culture broth affects in various ways the metabolic activity of the bacterial biomass, as evidenced by the production of PHB and/or H2 and biomass. The best carbon source for PHB accumulation and H2 production by Rhodopseudomonas sp. turned out to be the acetate, having the highest H2 production (2286 mL/L) and PHB accumulation (68.99 mg/L, 18.28% of cell dry weight).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421.

    Article  CAS  Google Scholar 

  2. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    Article  CAS  Google Scholar 

  3. Spolaore, P., Cassan, C. J., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  PubMed  Google Scholar 

  4. Benavides, A. M. S., Campos Rudin, M., Villalobos, N., Touloupakis, E., & Torzillo, G. (2019). Growth and hydrogen production by three Chlamydomonas strains cultivated in a commercial fertilizer. International Journal of Hydrogen Energy, 44(20), 9849–9855.

    Article  CAS  Google Scholar 

  5. Wakayama, T., Nakada, E., Asada, Y., & Miyake, J. (2000). Effect of light/dark cycle on bacterial hydrogen production by Rhodobacter sphaeroides RV. Applied Biochemistry and Biotechnology, 84, 431–440.

    Article  PubMed  Google Scholar 

  6. Carlozzi, P., Touloupakis, E., Giovannelli, A., Traversi, M. L., & Di Lorenzo, T. (2019). Poly-3-hydroxybutyrate and H2 production by Rhodopseudomonas sp. S16-VOGS3 grown in a new generation photobioreactor under single or combined nutrient deficiency. International Journal of Biological Macromolecules, 135, 821–828.

    Article  CAS  PubMed  Google Scholar 

  7. Carlozzi, P., Touloupakis, E., Di Lorenzo, T., Giovannelli, A., Seggiani, M., Cinelli, P., & Lazzeri, A. (2019). Whey and molasses as inexpensive raw materials for parallel production of biohydrogen and polyesters via a two-stage bioprocess: New routes towards a circular bioeconomy. Journal of Biotechnology, 303, 37–45.

    Article  CAS  PubMed  Google Scholar 

  8. Androga, D. D., Ozgur, E., Eroglu, I., Gündüz, U., & Yücel, M. (2012). Photofermentative hydrogen production in outdoor conditions. In D. Minic (Ed.), Hydrogen energy–challenges and perspectives (pp. 77–120). London: In Tech.

    Google Scholar 

  9. Morsy, F. M., Elbahloul, Y., & Elbadry, M. (2019). Photoheterotrophic growth of purple non-sulfur bacteria on tris acetate phosphate yeast extract (TAPY) medium and its hydrogen productivity in light under nitrogen deprivation. International Journal of Hydrogen Energy, 44(18), 9282–9290.

    Article  CAS  Google Scholar 

  10. Asada, Y., & Miyake, J. (1999). Photobiological hydrogen production. Journal of Bioscience and Bioengineering, 88(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Seifert, K., Waligorska, M., & Laniecki, M. (2010). Hydrogen generation in photobiological process from dairy wastewater. International Journal of Hydrogen Energy, 35, 9624–9629.

    Article  CAS  Google Scholar 

  12. Hakobyan, L., Gabrielyan, L., & Trchounian, A. (2019). Biohydrogen by Rhodobacter sphaeroides during photo-fermentation: Mixed vs. sole carbon sources enhance bacterial growth and H2 production. International Journal of Hydrogen Energy, 44(2), 674–679.

    Article  CAS  Google Scholar 

  13. Carlozzi, P., Lambardi, M., Pushparaj, B., Piccardi, R., & Sacchi, A. (2008). Indoor and outdoor photobiological hydrogen production by Rhodopseudomonas palustris, strain 42OL. Curr Topics Biotechnol, 4, 93–100.

    CAS  Google Scholar 

  14. Boran, E., Ozgur, E., Van der Burg, J., Yücel, M., Gündüz, U., & Eroglu, I. (2010). Biological hydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor. Journal of Cleaner Production, 18, S29–S35.

    Article  CAS  Google Scholar 

  15. Markov, S. A., & Weaver, P. F. (2008). Bioreactors for H2 production by purple nonsulfur bacteria. Applied Biochemistry and Biotechnology, 145, 79–86.

    Article  CAS  PubMed  Google Scholar 

  16. Lorrungruang, C., Martthong, J., Sasaki, K., & Noparatnaraporn, N. (2006). Selection of photosynthetic bacterium Rhodobacter sphaeroides 14F for polyhydroxyalkanoate production with two-stage aerobic dark cultivation. Journal of Bioscience and Bioengineering, 102(2), 128–131.

    Article  CAS  PubMed  Google Scholar 

  17. Carlozzi, P., Di Lorenzo, T., Ghanotakis, D. F., & Touloupakis, E. (2020). Effects of pH, temperature and salinity on P3HB synthesis culturing the marine Rhodovulum sulfidophilum DSM-1374. Applied Microbiology and Biotechnology, 104, 2007–2014.

    Article  CAS  PubMed  Google Scholar 

  18. Samui, A. B., & Kanai, T. (2019). Polyhydroxyalkanoates based copolymers. International Journal of Biological Macromolecules, 140, 522–537.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y., Yin, J., & Chen, G. Q. (2014). Microbial polyhydroxyalkanoates. challenges and opportunities. Curr Opin Biotechnol, 30C, 59–65.

    Article  CAS  Google Scholar 

  20. Chanprateep, S. (2010). Current trends in biodegradable polyhydroxyalkanoates. Journal of Bioscience and Bioengineering, 110, 621–632.

    Article  CAS  PubMed  Google Scholar 

  21. Poltronieri, P., & Kumar, P. (2017). Polyhydroxyalkanoates (PHAs) in industrial applications. In L. Martínez, O. Kharissova, & B. Kharisov (Eds.), Handbook of Ecomaterials (pp. 1–30). Cham: Springer.

    Google Scholar 

  22. Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G. Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144–150.

    Article  CAS  Google Scholar 

  23. da Silva, C. K., Costa, J. A. V., & de Morais, M. G. (2018). Polyhydroxybutyrate (PHB) synthesis by Spirulina sp. LEB 18 using biopolymer extraction waste. Applied Biochemistry and Biotechnology, 185, 822–833.

    Article  PubMed  CAS  Google Scholar 

  24. Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) - A review. International Journal of Biological Macromolecules, 131(15), 536–547.

    Article  CAS  PubMed  Google Scholar 

  25. Carlozzi, P., Seggiani, M., Cinelli, P., Mallegni, N., & Lazzeri, A. (2018). Photofermentative poly-3-hydroxybutyrate production by Rhodopseudomonas sp. S16-VOGS3 in a novel outdoor 70-L photobioreactor. Sustainability, 10(9), 3133.

    Article  CAS  Google Scholar 

  26. Khatipov, E., Miyake, M., Miyake, J., & Asada, Y. (1998). Accumulation of poly-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiology Letters, 162, 39–45.

    CAS  Google Scholar 

  27. Ye, J.-Y., Liu, T., Chen, Y., Liao, Q., Wang, Z.-K., & Chen, G.-C. (2013). Effect of AI crude extract on PHB accumulation and hydrogen photoproduction in Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 38(35), 15770–15776.

    Article  CAS  Google Scholar 

  28. Carlozzi, P., & Sacchi, A. (2001). Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. Journal of Biotechnology, 88(3), 239–249.

    Article  CAS  PubMed  Google Scholar 

  29. Hustede, E., Steinbüchel, A., & Schlegel, H. G. (1993). Relationship between photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Applied Microbiology and Biotechnology, 39, 87–93.

    Article  CAS  Google Scholar 

  30. Chen, Y. T., Wu, S. C., & Lee, C. M. (2012). Relationship between cell growth, hydrogen production and poly-β-hydroxybutyrate (PHB) accumulation by Rhodopseudomonas palustris WP3-5. International Journal of Hydrogen Energy, 37(18), 13887–13894.

    Article  CAS  Google Scholar 

  31. Carlozzi, P. (2012). Hydrogen photoproduction by Rhodopseudomonas palustris 42OL cultured at high irradiance under a semicontinuous regime. J Biomed Biotechnol, 590693.

  32. Carlozzi, P., Pushparaj, B., Degl'Innocenti, A., & Capperucci, A. (2006). Growth characteristics of Rhodopseudomonas palustris cultured outdoors, in an underwater tubular photobioreactor, and investigation on photosynthetic efficiency. Applied Microbiology and Biotechnology, 73(4), 789–795.

    Article  CAS  PubMed  Google Scholar 

  33. Carlozzi, P., Buccioni, A., Minieri, S., Pushparaj, B., Piccardi, R., Ena, A., & Pintucci, C. (2010). Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresource Technology, 101(9), 3115–3120.

    Article  CAS  PubMed  Google Scholar 

  34. Padovani, G., Emiliani, G., Giovanelli, A., Traversi, M. L., & Carlozzi, P. (2018). Assessment of glycerol usage by five different purple non-sulfur bacterial strains for bioplastic production. Journal of Environmental Chemical Engineering, 6, 616–622.

    Article  CAS  Google Scholar 

  35. Carlozzi, P. (2009). The effect of irradiance growing on hydrogen photoevolution and on the kinetic growth in Rhodopseudomonas palustris, strain 42OL. International Journal of Hydrogen Energy, 34(19), 7949–7958.

    Article  CAS  Google Scholar 

  36. Hillmer, P., & Gest, H. (1977). H2 Metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: Production and utilization of H2 by resting cells. Journal of Bacteriology, 129(2), 732–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higuchi-Takeuchi, M., & Numata, K. (2019). Marine purple photosynthetic bacteria as sustainable microbial production hosts. Frontiers in Bioengineering and Biotechnology, 7, 258.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oh, Y.-K., Seol, E.-H., Kim, M.-S., & Park, S. (2004). Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 29, 1115–1121.

    CAS  Google Scholar 

  39. Reungsang, A., Zhong, N., Yang, Y., Sittijunda, S., Xia, A., & Liao, Q. (2018). Hydrogen from photo fermentation. In Q. Liao, J. Chang, C. Herrmann, & A. Xia (Eds.), Bioreactors for microbial biomass and energy conversion (pp. 221–317). Singapore: Springer Singapore.

    Chapter  Google Scholar 

  40. Policastro, G., Luongo, V., & Fabbricino, M. (2020). Biohydrogen and poly-β-hydroxybutyrate production by winery wastewater photofermentation: Effect of substrate concentration and nitrogen source. Journal of Environmental Management, 271, 111006.

    Article  CAS  PubMed  Google Scholar 

  41. Melnicki, M. R., Eroglu, E., & Melis, A. (2009). Changes in hydrogen production and polymer accumulation upon sulfur-deprivation in purple photosynthetic bacteria. International Journal of Hydrogen Energy, 34, 6157–6170.

    Article  CAS  Google Scholar 

  42. Gosse, J. L., Engel, B. J., Hui, J. C., Harwood, C. S., & Flickinger, M. C. (2010). Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized non growing photosynthetic Rhodopseudomonas palustris. Biotechnology Progress, 26, 907–918.

    CAS  PubMed  Google Scholar 

  43. Brandl, H., Gross, R. A., Lenz, R. W., Lloyd, R., & Fuller, R. C. (1991). The accumulation of poly(3-hydroxyalkanoates) in Rhodobacters phaeroides. Archives of Microbiology, 155, 337–340.

    Article  CAS  Google Scholar 

  44. Laurinavichene, T., & Tsygankov, A. (2018). Inoculum density and buffer capacity are crucial for H2 photoproduction from acetate by purple bacteria. International Journal of Hydrogen Energy, 43(41), 18873–18882.

    Article  CAS  Google Scholar 

  45. McKinlay, J. B., & Harwood, C. S. (2011). Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria. mBio, 2(2), e00323–e00310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shi, X. Y., & Yu, H. Q. (2005). Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulata. Journal of Chemical Technology and Biotechnology, 80, 1198–1203.

    Article  CAS  Google Scholar 

  47. Kessler, B., & Witholt, B. (2001). Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. Journal of Biotechnology, 86, 97–104.

    Article  CAS  PubMed  Google Scholar 

  48. Sato, I., Yoshikawa, J., Furusawa, A., Chiku, K., Amachi, S., & Fujii, T. (2010). Isolation and properties of malic enzyme and its gene in Rhodopseudomonas palustris no. 7. Bioscience, Biotechnology, and Biochemistry, 74, 75–81.

    Article  CAS  PubMed  Google Scholar 

  49. Eroglu, I., Aslan, K., Gündüz, U., Yücel, M., & Türker, L. (1999). Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. Journal of Biotechnology, 35, 103–113.

    Article  CAS  Google Scholar 

Download references

Funding

The work has been supported by the ROBO-IMPLANT project funded from the Tuscany region, Italy (Bando FAS Salute 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios Touloupakis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touloupakis, E., Poloniataki, E.G., Ghanotakis, D.F. et al. Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate. Appl Biochem Biotechnol 193, 307–318 (2021). https://doi.org/10.1007/s12010-020-03428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03428-1

Keywords

Navigation