Skip to main content
Log in

Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Textile industry consumes a large proportion of available water and releases huge amounts of toxic azo dye effluents, leading to an inevitable situation of acute environmental pollution that has been a significant threat to mankind. Decolorization or detoxification of harmful azo dyes has become a global priority to overcome the disastrous consequences and salvage the ecosystem. Biodegradation of textile azo dyes by endophytes stands to be a lucrative and viable alternative over conventional physico-chemical methods, owing to their eco-friendliness, cost-competitive and non-toxic nature. Especially, plant endophytic microbes exhibit promising biodegradation potential which has wired up the effective removal of textile azo dyes, attributing to their ability to produce dye degrading enzymes, laccases, peroxidases and azoreductases. Although both bacterial and fungal endophytes have been tried for azo dye degradation, endophytic fungi find broader application over bacteria. Despite of the advancements made in microbe-mediated biodegradation, there is still a need to fill the gap in lab to in situ translation of biodegradation research. This review concisely accentuates the xenobiotics of textile azo dyes and microbial mechanisms of biodegradation of textile azo dyes, positing plant endophytic community, especially bacterial and fungal endophytes as the potential dye degraders, highlighting currently reported dye degrading endophytic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Desore A, Narula SA (2018) An overview on corporate response towards sustainability issues in textile industry. Environ Dev Sustain 20(4):1439–1459

    Google Scholar 

  2. Bhatia S (2017) Pollution control in textile industry. CRC Press, Boca Raton

    Google Scholar 

  3. Baban A, Yediler A, Lienert D, Kemerdere N, Kettrup A (2003) Ozonation of high strength segregated effluents from a woolen textile dyeing and finishing plant. Dyes Pigm 58(2):93–98

    CAS  Google Scholar 

  4. Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19:350–371

    CAS  Google Scholar 

  5. Hossain MS, Das SC, Islam JM, Al Mamun MA, Khan MA (2018) Reuse of textile mill ETP sludge in environmental friendly bricks—effect of gamma radiation. Radiat Phys Chem 151:77–83

    CAS  Google Scholar 

  6. Rehman K, Shahzad T, Sahar A, Hussain S, Mahmood F, Siddique MH, Siddique MA, Rashid MI (2018) Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ 6:e4802

    PubMed  PubMed Central  Google Scholar 

  7. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290

    Google Scholar 

  8. Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605

    PubMed  CAS  Google Scholar 

  9. Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Bio/Technol 14(1):73–92

    CAS  Google Scholar 

  10. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8(3–4):553–597

    CAS  Google Scholar 

  11. Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131

    Google Scholar 

  12. Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol Appl Sci 3(2):670–690

    CAS  Google Scholar 

  13. Mishra S, Maiti A (2019) Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Technol Environ Policy 21(4):763–781

    CAS  Google Scholar 

  14. Corrêa RCG, Iark D, de Sousa Idelfonso A, Uber TM, Bracht A, Peralta RM (2018) Endophytes as pollutant-degrading agents: current trends and perspectives. In Endophytes and secondary metabolites. Springer, Cham, pp 1–22

  15. Sreedharan V, Rao KVB (2019) Biodegradation of textile azo dyes. In: Nanoscience and biotechnology for environmental applications. Springer, Cham, pp 115–139

  16. Garg SK, Tripathi M (2017) Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Res J Microbiol 12:1–19

    CAS  Google Scholar 

  17. Sim CSF, Chen SH, Ting ASY (2019) Endophytes: emerging tools for the bioremediation of pollutants. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 189–217

  18. Mansour HB, Houas I, Montassar F, Ghedira K, Barillier D, Mosrati R, Chekir-Ghedira L (2012) Alteration of in vitro and acute in vivo toxicity of textile dyeing wastewater after chemical and biological remediation. Environ Sci Pollut Res 19(7):2634–2643

    Google Scholar 

  19. Sghaier I, Guembri M, Chouchane H (2019) Recent advances in textile wastewater treatment using microbial consortia. J Text Eng Fashion Technol 5(3):134–146

    Google Scholar 

  20. Barathi S, Arulselvi PI (2015) Decolorization, degradation, and toxicological analysis of textile dye effluent by using novel techniques—review. Int J Sci Res Manag 3(2):2118–2136

    Google Scholar 

  21. Chequer FMD, Angeli JPF, Ferraz ERA, Tsuboy MS, Marcarini JC, Mantovani MS, de Oliveira DP (2009) The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res Genet Toxicol Environ Mutagenesis 676(1–2):83–86

    CAS  Google Scholar 

  22. Sivarajasekar N, Baskar R (2014) Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: process modeling, analysis and optimization using statistical design. J Ind Eng Chem 20(5):2699–2709

    CAS  Google Scholar 

  23. Piątkowska M, Jedziniak P, Olejnik M, Żmudzki J, Posyniak A (2018) Absence of evidence or evidence of absence? A transfer and depletion study of Sudan I in eggs. Food Chem 239:598–602

    PubMed  Google Scholar 

  24. Christie RM (2007) Environmental aspects of textile dyeing. Elsevier, Amsterdam

    Google Scholar 

  25. Gopinath KP, Murugesan S, Abraham J, Muthukumar K (2009) Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresour Technol 100(24):6295–6300

    PubMed  CAS  Google Scholar 

  26. Gottilieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourization. J Biotechnol 101(1):49–56

    Google Scholar 

  27. Chequer FMD, Lizier TM, de Felício R, Zanoni MVB, Debonsi HM, Lopes NP, de Oliveira DP (2015) The azo dye Disperse Red 13 and its oxidation and reduction products showed mutagenic potential. Toxicol In Vitro 29(7):1906–1915

    PubMed  CAS  Google Scholar 

  28. Akansha K, Chakraborty D, Sachan SG (2019) Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatal Agric Biotechnol 18:101044

    Google Scholar 

  29. Sandesh K, Kumar G, Chidananda B, Ujwal P (2019) Optimization of Direct Blue-14 dye degradation by Bacillus fermus (Kx898362) an alkaliphilic plant endophyte and assessment of degraded metabolite toxicity. J Hazard Mater 364:742–751

    Google Scholar 

  30. Little L, Lamb III J (1973) Acute toxicity of 46 selected dyes to the Fathead Minnow, Pimephales promelas. In: Dyes and the environment-reports on selected dyes and their effects, vol 1. American Dye Manufacturers Institute, p 130

  31. Mansour HB, Ayed-Ajmi Y, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L (2010) Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environ Sci Pollut Res 17(7):1371–1378

    Google Scholar 

  32. Guo G, Tian F, Zhang C, Liu T, Yang F, Hu Z, Liu C, Wang S, Ding K (2019) Performance of a newly enriched bacterial consortium for degrading and detoxifying azo dyes. Water Sci Technol 79(11):2036–2045

    PubMed  CAS  Google Scholar 

  33. Govindwar SP, Kurade MB, Tamboli DP, Kabra AN, Kim PJ, Waghmode TR (2014) Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum. Chemosphere 109:234–238

    PubMed  CAS  Google Scholar 

  34. Bankole PO, Adekunle AA, Obidi OF, Chandanshive VV, Govindwar SP (2018) Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustain Environ Res 28(5):214–222

    CAS  Google Scholar 

  35. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404

    PubMed  Google Scholar 

  36. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Arunkumara P, Soundarapandianb N (2017) Bioremediation of color and COD from dye effluent using indigenous and exogenous microbes. Desalin Water Treat 59:243–247

    Google Scholar 

  38. Glick BR, Stearns JC (2011) Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. Int J Phytoremediation 13(sup1):4–16

    PubMed  Google Scholar 

  39. Shehzadi M, Fatima K, Imran A, Mirza M, Khan Q, Afzal M (2016) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150(6):1261–1270

    Google Scholar 

  40. Kabra AN, Khandare RV, Govindwar SP (2013) Development of a bioreactor for remediation of textile effluent and dye mixture: a plant–bacterial synergistic strategy. Water Res 47(3):1035–1048

    PubMed  CAS  Google Scholar 

  41. Patil SM, Chandanshive VV, Rane NR, Khandare RV, Watharkar AD, Govindwar SP (2016) Bioreactor with Ipomoea hederifolia adventitious roots and its endophyte Cladosporium cladosporioides for textile dye degradation. Environ Res 146:340–349

    PubMed  CAS  Google Scholar 

  42. Wuhrmann K, Mechsner K, Kappeler T (1980) Investigation on rate—determining factors in the microbial reduction of azo dyes. Eur J Appl Microbiol Biotechnol 9(4):325–338

    CAS  Google Scholar 

  43. Dave SR, Patel TL, Tipre DR (2015) Bacterial degradation of azo dye containing wastes. In: Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 57–83

  44. Imran M, Negm F, Hussain S, Ashraf M, Ashraf M, Ahmad Z, Arshad M, Crowley DE (2016) Characterization and purification of membrane‐bound azoreductase from azo dye degrading Shewanella sp. strain IFN4. Clean: Soil, Air, Water 44(11):1523–1530

    CAS  Google Scholar 

  45. Haghshenas H, Kay M, Dehghanian F, Tavakol H (2016) Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase. J Biomol Struct Dyn 34(3):453–462

    PubMed  CAS  Google Scholar 

  46. Shang N, Ding M, Dai M, Si H, Li S, Zhao G (2019) Biodegradation of malachite green by an endophytic bacterium Klebsiella aerogenes S27 involving a novel oxidoreductase. Appl Microbiol Biotechnol 103(5):2141–2153

    CAS  Google Scholar 

  47. Khandare R, Kabra A, Awate A, Govindwar SP (2013) Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol 10(5):1039–1050

    CAS  Google Scholar 

  48. Shi X, Liu Q, Ma J, Liao H, Xiong X, Zhang K, Wang T, Liu X, Xu T, Yuan S (2015) An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett 37(11):2279–2288

    PubMed  CAS  Google Scholar 

  49. Riva V, Mapelli F, Syranidou E, Crotti E, Choukrallah R, Kalogerakis N, Borin S (2019) Root bacteria recruited by Phragmites australis in constructed wetlands have the potential to enhance azo-dye phytodepuration. Microorganisms 7(10):384

    PubMed Central  CAS  Google Scholar 

  50. Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9(4):397–402

    Google Scholar 

  51. Pundir RK, Rana S, Kaur A, Kashyap N, Jain P (2014) Bioprospecting potential of endophytic bacteria isolated from indigenous plants of Ambala (Haryana, India). Int J Pharm Sci Res 5(6):2309

    Google Scholar 

  52. Masarbo RS, Niranjana S, Monisha T, Nayak AS, Karegoudar T (2019) Efficient decolorization and detoxification of sulphonated azo dye Ponceau 4R by using single and mixed bacterial consortia. Biocatal Biotransform 37(5):367–376

    CAS  Google Scholar 

  53. Guo G, Li X, Tian F, Liu T, Yang F, Ding K, Liu C, Chen J, Wang C (2020) Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere 244:125510

    PubMed  CAS  Google Scholar 

  54. Khalid A, Mahmood S (2015) The biodegradation of azo dyes by actinobacteria. In: Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 297–314

  55. Lu L, Zeng G, Fan C, Ren X, Wang C, Zhao Q, Zhang J, Chen M, Chen A, Jiang M (2013) Characterization of a laccase-like multicopper oxidase from newly isolated Streptomyces sp. C1 in agricultural waste compost and enzymatic decolorization of azo dyes. Biochem Eng J 72:70–76

    CAS  Google Scholar 

  56. Moya R, Hernández M, García-Martín AB, Ball AS, Arias ME (2010) Contributions to a better comprehension of redox-mediated decolouration and detoxification of azo dyes by a laccase produced by Streptomyces cyaneus CECT 3335. Bioresour Technol 101(7):2224–2229

    PubMed  CAS  Google Scholar 

  57. Shehzadi M, Afzal M, Khan MU, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res 58:152–159

    PubMed  CAS  Google Scholar 

  58. Shilpa S, Shikha R (2015) Biodegradation of dye reactive black-5 by a novel bacterial endophyte. Int Res J Environ Sci 4(4):44–53

    CAS  Google Scholar 

  59. Shahid M, Mahmood F, Hussain S, Shahzad T, Haider MZ, Noman M, Mushtaq A, Fatima Q, Ahmed T, Mustafa G (2018) Enzymatic detoxification of azo dyes by a multifarious Bacillus sp. strain MR-1/2-bearing plant growth-promoting characteristics. 3 Biotech 8(10):425

    PubMed  PubMed Central  Google Scholar 

  60. Libra JA, Borchert M, Banit S (2003) Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions. Biotechnol Bioeng 82(6):736–744

    PubMed  CAS  Google Scholar 

  61. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    PubMed  CAS  Google Scholar 

  62. Humnabadkar R, Saratale G, Govindwar SP (2008) Decolorization of purple 2R by Aspergillus ochraceus (NCIM-1146). Asian J Microbiol Biotechnol Environ Exp Sci 10(3):693–697

    Google Scholar 

  63. Bergsten-Torralba LR, Nishikawa MM, Baptista DF, Magalhães DdP, Silva Md (2009) Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment. Braz J Microbiol 40(4):808–817

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Singh S, Pakshirajan K (2010) Enzyme activities and decolourization of single and mixed azo dyes by the white-rot fungus Phanerochaete chrysosporium. Int Biodeterior Biodegrad 64(2):146–150

    CAS  Google Scholar 

  65. Kaushik P, Malik A (2015) Mycoremediation of synthetic dyes: an insight into the mechanism, process optimization and reactor design. In: Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 1–25

  66. Ting ASY, Lee MVJ, Chow YY, Cheong SL (2016) Novel exploration of endophytic Diaporthe sp. for the biosorption and biodegradation of triphenylmethane dyes. Water Air Soil Pollut 227(4):109

    Google Scholar 

  67. Ngieng NS, Zulkharnain A, Roslan HA, Husaini A (2013) Decolourisation of synthetic dyes by endophytic fungal flora isolated from senduduk plant (Melastoma malabathricum). ISRN Biotechnol 2013:18

    Google Scholar 

  68. Tochhawng L, Mishra VK, Passari AK, Singh BP (2019) Endophytic fungi: role in dye decolorization. In: Advances in endophytic fungal research. Springer, Cham, pp 1–15

  69. Gahlout M, Gupte S, Gupte A (2013) Optimization of culture condition for enhanced decolorization and degradation of azo dye reactive violet 1 with concomitant production of ligninolytic enzymes by Ganoderma cupreum AG-1. 3 Biotech 3(2):143–152

    PubMed  Google Scholar 

  70. Sidhu A, Agrawal S, Sable V, Patil S, Gaikwad V (2014) Isolation of Colletotrichum gloeosporioides gr., a novel endophytic laccase producing fungus from the leaves of a medicinal plant, Piper betle. Int J Sci Eng Res 5:1087–1096

    Google Scholar 

  71. Muthezhilan R, Vinoth S, Gopi K, Jaffar Hussain A (2014) Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J ChemTech Res 6(9):4154–4160

    CAS  Google Scholar 

  72. Verma SK, Kumar A, Lal M, Debnath M (2015) Biodegradation of synthetic dye by endophytic fungal isolate in Calotropis procera root. Int J Appl Sci Biotechnol 3(3):373–380

    Google Scholar 

  73. Agrawal S (2017) Decolorization of textile dye by laccase from newly isolated endophytic fungus Daldinia sp. Kavaka 48:33–41

    Google Scholar 

  74. Bulla LMC, Polonio JC, de Brito Portela-Castro AL, Kava V, Azevedo JL, Pamphile JA (2017) Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes. Environ Monit Assess 189(2):88

    PubMed  Google Scholar 

  75. Sun J, Guo N, Niu L-L, Wang Q-F, Zang Y-P, Zu Y-G, Fu Y-J (2017) Production of laccase by a new Myrothecium verrucaria MD-R-16 isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its application on dye decolorization. Molecules 22(4):673

    PubMed Central  Google Scholar 

  76. Marzall-Pereira M, Savi DC, Bruscato EC, Niebisch CH, Paba J, Aluízio R, Ferreira-Maba LS, Galli-Terasawa LV, Glienke C, Kava V (2019) Neopestalotiopsis species presenting wide dye destaining activity: Report of a mycelium-associated laccase. Microbiol Res 228:126299

    PubMed  CAS  Google Scholar 

  77. Jin R, Yang H, Zhang A, Wang J, Liu G (2009) Bioaugmentation on decolorization of CI Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR). J Hazard Mater 163(2–3):1123–1128

    PubMed  CAS  Google Scholar 

  78. Liu G-f, Zhou J-t, Qu Y-y, Ma X (2007) Decolorization of sulfonated azo dyes with two photosynthetic bacterial strains and a genetically engineered Escherichia coli strain. World J Microbiol Biotechnol 23(7):931–937

    Google Scholar 

  79. Rathod J, Dhebar S, Archana G (2017) Efficient approach to enhance whole cell azo dye decolorization by heterologous overexpression of Enterococcus sp. L2 azoreductase (azoA) and Mycobacterium vaccae formate dehydrogenase (fdh) in different bacterial systems. Int Biodeterior Biodegrad 124:91–100

    CAS  Google Scholar 

  80. Liang Y, Hou J, Liu Y, Luo Y, Tang J, Cheng JJ, Daroch M (2018) Textile dye decolorizing Synechococcus PCC7942 engineered with CotA laccase. Front Bioeng Biotechnol 6:95

    PubMed  PubMed Central  Google Scholar 

  81. Pandey G, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun 327(3):637–639

    PubMed  CAS  Google Scholar 

  82. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    CAS  Google Scholar 

  83. Sharma S, Saxena R, Gaur G (2014) Study of removal techniques for azo dyes by biosorption: a review. J Appl Chem 7(10):06–21

    Google Scholar 

  84. Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):71–79

    CAS  Google Scholar 

  85. Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  86. Takey M, Shaikh T, Mane N, Majumder D (2014) Bioremidiation of xenobiotics: use of dead fungal biomass as biosorbent. Int J Res Eng Technol 3(1):565–570

    Google Scholar 

  87. Saraf S, Vaidya VK (2015) Comparative study of biosorption of textile dyes using fungal biosorbents. Int J Curr Microbiol App Sci 2:357–365

    Google Scholar 

  88. Vijayaraghavan K, Yun Y-S (2008) Polysulfone-immobilized Corynebacterium glutamicum: a biosorbent for Reactive black 5 from aqueous solution in an up-flow packed column. Chem Eng J 145(1):44–49

    CAS  Google Scholar 

  89. Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    PubMed  CAS  Google Scholar 

  90. Aksu Z, Dönmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40(7):2443–2454

    CAS  Google Scholar 

  91. Aksu Z (2003) Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem 38(10):1437–1444

    CAS  Google Scholar 

  92. Husain Q (2010) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Bio/Technol 9(2):117–140

    CAS  Google Scholar 

  93. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    PubMed  CAS  Google Scholar 

  94. Saratale RG, Saratale GD, Chang J-S, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    CAS  Google Scholar 

  95. Telke AA, Kadam AA, Govindwar SP (2015) Bacterial enzymes and their role in decolorization of azo dyes. In: Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 149–168

  96. Keck A, Klein J, Kudlich M, Stolz A, Knackmuss H-J, Mattes R (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl Environ Microbiol 63(9):3684–3690

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Chacko JT, Subramaniam K (2011) Enzymatic degradation of azo dyes—a review. Int J Environ Sci 1(6):1250

    Google Scholar 

  98. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59(2):73–84

    CAS  Google Scholar 

  99. Lima DR, Baeta BE, Silva GAd, Silva SQ, Aquino SF (2014) Use of multivariate experimental designs for optimizing the reductive degradation of an azo dye in the presence of redox mediators. Quím Nova 37(5):827–832

    CAS  Google Scholar 

  100. Yang J, Yang X, Lin Y, Ng TB, Lin J, Ye X (2015) Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism. PLoS ONE 10(5):e0127714

    PubMed  PubMed Central  Google Scholar 

  101. Zheng F, Cui B-K, Wu X-J, Meng G, Liu H-X, Si J (2016) Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. Int Biodeterior Biodegrad 110:69–78

    Google Scholar 

  102. Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7(2):101–111

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Pereira L, Coelho AV, Viegas CA, dos Santos MMC, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139(1):68–77

    PubMed  CAS  Google Scholar 

  104. Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO (2006) Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J Biol Inorg Chem 11(4):514

    PubMed  CAS  Google Scholar 

  105. Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33(1):25–40

    PubMed  CAS  Google Scholar 

  106. Abedin RM (2008) Decolorization and biodegradation of crystal violet and malachite green by Fusarium solani (Martius) Saccardo. A comparative study on biosorption of dyes by the dead fungal biomass. Am Euras J Bot 12:17–31

    Google Scholar 

  107. Zille A, Gornacka B, Rehorek A, Cavaco-Paulo A (2005) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microbiol 71(11):6711–6718

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Roriz MS, Osma JF, Teixeira JA, Couto SR (2009) Application of response surface methodological approach to optimise Reactive Black 5 decolouration by crude laccase from Trametes pubescens. J Hazard Mater 169(1–3):691–696

    PubMed  CAS  Google Scholar 

  109. Mendes S, Robalo MP, Martins LO (2015) Bacterial enzymes and multi-enzymatic systems for cleaning-up dyes from the environment. In: Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 27–55

  110. Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzym Microb Technol 31(7):907–931

    Google Scholar 

  111. Gomare SS, Jadhav JP, Govindwar SP (2008) Degradation of sulfonated azo dyes by the purified lignin peroxidase from Brevibacillus laterosporus MTCC 2298. Biotechnol Bioprocess Eng 13(2):136–143

    CAS  Google Scholar 

  112. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56(1–2):81–87

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea, under the “Regional Specialized Industry Development Program (R&D, S2931078)” supervised by the Korea Institute for Advancement of Technology (KIAT). This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20204010600100).

Author information

Authors and Affiliations

Authors

Contributions

BSG has the idea for the article, performed the literature search and data analysis, BSG and GK have drafted, designed the figures, and critically revised the entire work, HLC has also performed the certain literature search and JHK has supervised the entire work.

Corresponding authors

Correspondence to Burragoni Sravanthi Goud, Ganesh Koyyada or Jae Hong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goud, B.S., Cha, H.L., Koyyada, G. et al. Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Curr Microbiol 77, 3240–3255 (2020). https://doi.org/10.1007/s00284-020-02202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02202-0

Navigation