Skip to main content

Advertisement

Log in

Exploring the Therapeutic Efficacy of Zingerone Nanoparticles in Treating Biofilm-Associated Pyelonephritis Caused by Pseudomonas aeruginosa in the Murine Model

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Biofilms of Pseudomonas aeruginosa can cause complicated urinary tract infections especially in people with indwelling catheters which may result in pyelonephritis. Microorganisms in biofilm demonstrate high resistance to both antibiotics and host protection mechanisms, often resulting in chronic and difficult-to-treat infections. This study is aimed to assess in vivo and ex vivo efficacy of Zingerone nanoparticles (Z-NPs) against P. aeruginosa biofilm-associated murine acute pyelonephritis. In the present study, Zingerone and chitosan acted synergistically in the form of Z-NPs and found to be nontoxic to the kidney cell lines as depicted in MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay demonstrating their cytocompatibility. In vivo experiments indicated that Z-NPs (100 mg/kg) treatment reduced P. aeruginosa pathogenicity and enhanced the clearance of bacterial count from the renal and bladder tissue. Z-NPs improved the disease outcome by lowering the levels of various inflammatory markers, and histopathological examination revealed better recovery in renal and bladder tissue. Besides, ex vivo efficacy also confirmed that Z-NPs enhanced serum bactericidal effect along with increased phagocytic uptake and intracellular killing of P. aeruginosa as confirmed by fluorescent microscopy. To the best of our knowledge, this is the first study to provide evidence that Z-NPs are effective therapeutic agents for combating P. aeruginosa associated pyelonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hvidberg, Hanne, Carsten Struve, Karen A. Krogfelt, Nils Christensen, Søren N. Rasmussen, and Niels Frimodt-Møller. 2000. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrobial Agents and Chemotherapy 44. American Society for Microbiology: 156–163. https://doi.org/10.1128/AAC.44.1.156-163.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Derbie, Awoke, Derese Hailu, Daniel Mekonnen, Bayeh Abera, and Gashaw Yitayew. 2017. Antibiogram profile of uropathogens isolated at Bahir Dar regional health research laboratory Centre, Northwest Ethiopia. The Pan African Medical Journal 26. African Field Epidemiology Network. https://doi.org/10.11604/pamj.2017.26.134.7827.

  3. Foxman, Betsy, and Patricia Brown. 2003. Epidemiology of urinary tract infections: Transmission and risk factors, incidence, and costs. Infectious Disease Clinics of North America. W.B. Saunders. https://doi.org/10.1016/S0891-5520(03)00005-9.

  4. Katsiari, M., C. Nikolaou, Z. Roussou, C. Triantopoulou, D. Apessou, Ed Platsouka, and A. Maguina. 2012. Community acquired quinolone-resistant Escherichia coli pyelonephritis complicated with multiple renal abscesses: A case report. Hippokratia 16: 381–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramakrishnan, Kalyanakrishnan, and Dewey C. Scheid. 2005. Diagnosis and management of acute pyelonephritis in adults. American Family Physician, 71: 933-942.

  6. Kida, Yutaka, Yuichiro Higashimoto, Hiroyoshi Inoue, Takashi Shimizu, and Koichi Kuwano. 2008. A novel secreted protease from Pseudomonas aeruginosa activates NF-KB through protease-activated receptors. Cellular Microbiology 10. John Wiley & Sons, Ltd: 1491–1504. https://doi.org/10.1111/j.1462-5822.2008.01142.x.

    Article  CAS  PubMed  Google Scholar 

  7. Fazzeli, Hossein, Reza Akbar, Sharareh Moghim, Tahmineh Narimani, Mohammad Reza Arabestani, and Ali Reza Ghoddousi. 2012. Pseudomonas aeruginosa infections in patients, hospital means, and personnel’s specimens. Journal of Research in Medical Sciences 17: 332–337.

    CAS  Google Scholar 

  8. Ito, A., A. Taniuchi, T. May, K. Kawata, and S. Okabe. 2009. Increased antibiotic resistance of Escherichia coli in mature biofilms. Applied and Environmental Microbiology 75: 4093–4100. https://doi.org/10.1128/AEM.02949-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valderrey, Andrea D., María José Pozuelo, Pedro A. Jiménez, María D. Maciá, Antonio Oliver, and Rafael Rotger. 2010. Chronic colonization by Pseudomonas aeruginosa of patients with obstructive lung diseases: Cystic fibrosis, bronchiectasis, and chronic obstructive pulmonary disease. https://doi.org/10.1016/j.diagmicrobio.2010.04.008.

  10. Gellatly, Shaan L., and Robert E.W. Hancock. 2013. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease 67: 159–173. https://doi.org/10.1111/2049-632X.12033.

    Article  CAS  PubMed  Google Scholar 

  11. Sousa, Ana Margarida, and Maria Olívia Pereira. 2014. Pseudomonas Aeruginosa diversification during infection development in cystic fibrosis lungs-A review. Pathogens. MDPI AG 3: 680–703. https://doi.org/10.3390/pathogens3030680.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mittal, Rahul, Sudhir Aggarwal, Saroj Sharma, Sanjay Chhibber, and Kusum Harjai. 2009. Urinary tract infections caused by Pseudomonas aeruginosa: A minireview. Journal of Infection and Public Health. Elsevier 2: 101–111. https://doi.org/10.1016/j.jiph.2009.08.003.

    Article  PubMed  Google Scholar 

  13. Kumar, Lokender, Sanjay Chhibber, and Kusum Harjai. 2014. Zingerone suppresses liver inflammation induced by antibiotic mediated endotoxemia through down regulating hepatic mRNA expression of inflammatory markers in Pseudomonas aeruginosa peritonitis mouse model. PLoS One: 9. https://doi.org/10.1371/journal.pone.

  14. Varela-Rey, Marta, Nieves Embade, Usue Ariz, Shelly C. Lu, José M. Mato, and M. Luz Martínez-Chantar. 2009. Non-alcoholic steatohepatitis and animal models: Understanding the human disease. The International Journal of Biochemistry & Cell Biology 41: 969–976. https://doi.org/10.1016/j.biocel.2008.10.027.

    Article  CAS  Google Scholar 

  15. Huh, Ae Jung, and Young Jik Kwon. 2011. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release. Elsevier 156: 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002.

    Article  CAS  PubMed  Google Scholar 

  16. Karuna, Sharma, Chhibber Sanjay, and Harjai Kusum. 2020. Enhanced efficacy of zingerone niosomes in attenuation of virulence and biofilm formation by Pseudomonas aeruginosa: An in-vitro and ex-vivo study. International Journal of Pharma and Bio Sciences 11: 32–42. https://doi.org/10.22376/ijpbs.2020.11.1.b32-42.

    Article  CAS  Google Scholar 

  17. Mittal, Rahul, Sanjay Chhibber, Saroj Sharma, and Kusum Harjai. 2004. Macrophage inflammatory protein-2, neutrophil recruitment and bacterial persistence in an experimental mouse model of urinary tract infection. Microbes and Infection 6: 1326–1332. https://doi.org/10.1016/j.micinf.2004.08.008.

    Article  CAS  PubMed  Google Scholar 

  18. Harjai, Kusum, Rahul Mittal, Sanjay Chhibber, and Saroj Sharma. 2005. Contribution of Tamm-Horsfall protein to virulence of pseudomonas aeruginosa in urinary tract infection. Microbes and Infection 7. Elsevier Masson SAS: 132–137. https://doi.org/10.1016/j.micinf.2004.09.005.

    Article  CAS  PubMed  Google Scholar 

  19. Anjaneyulu, Muragundla, and Kanwaljit Chopra. 2004. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clinical and Experimental Pharmacology and Physiology 31. John Wiley & Sons, Ltd: 244–248. https://doi.org/10.1111/j.1440-1681.2004.03982.x.

    Article  CAS  PubMed  Google Scholar 

  20. Rockett, Kirk A., Melissa M. Awburn, Elizabeth J. Rockett, William B. Cowden, and Ian A. Clark. 1994. Possible role of nitric oxide in malarial immunosuppression. Parasite Immunology 16. John Wiley & Sons, Ltd: 243–249. https://doi.org/10.1111/j.1365-3024.1994.tb00346.x.

    Article  CAS  PubMed  Google Scholar 

  21. Kumar, Lokender, Sanjay Chhibber, and Kusum Harjai. 2014. Structural alterations in pseudomonas aeruginosa by zingerone contribute to enhanced susceptibility to antibiotics, serum and phagocytes. Life Sciences 117. Elsevier Inc: 24–32. https://doi.org/10.1016/j.lfs.2014.09.017.

    Article  CAS  PubMed  Google Scholar 

  22. Flores-Mireles, Ana L., Jennifer N. Walker, Michael Caparon, and Scott J. Hultgren. 2015. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology. Nature Publishing Group 13: 269–284. https://doi.org/10.1038/nrmicro3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tenke, Peter, Béla Köves, Károly Nagy, Scott J. Hultgren, Werner Mendling, Björn Wullt, Magnus Grabe, Florian M.E. Wagenlehner, Mete Cek, Robert Pickard, Henry Botto, Kurt G. Naber, and Truls E. Bjerklund Johansen. 2012. Update on biofilm infections in the urinary tract. World Journal of Urology 30: 51–57. https://doi.org/10.1007/s00345-011-0689-9.

    Article  PubMed  Google Scholar 

  24. Daswani, Poonam G., Appasaheb A. Ghadge, S. Brijesh, and Tannaz J. Birdi. 2011. Preparation of decoction of medicinal plants: A self-help measure? Journal of Alternative and Complementary Medicine 17: 1099–1100. https://doi.org/10.1089/acm.2011.0217.

    Article  PubMed Central  Google Scholar 

  25. Bose, Sunil K., Monika Chauhan, Neelima Dhingra, Sanjay Chhibber, and Kusum Harjai. 2020. Terpinen-4-ol attenuates quorum sensing regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Future Microbiology. Future Medicine Ltd 15: 127–142. https://doi.org/10.2217/fmb-2019-0204.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Xin, Stephan Schauder, Noelle Potier, Alain Van Dorsselaer, Istvan Pelczer, Bonnie L. Bassler, and Frederick M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545–549. https://doi.org/10.1038/415545a.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng, Lintao, Caiqin Qin, Wei Wang, Weilin Chi, and Wei Li. 2008. Absorption and distribution of chitosan in mice after oral administration. Carbohydrate Polymers 71. Elsevier: 435–440. https://doi.org/10.1016/j.carbpol.2007.06.016.

    Article  CAS  Google Scholar 

  28. Jordan, Julie L., Susan Henderson, Clive M. Elson, Juan Zhou, Agis Kydonieus, John Downie, and Timothy D.G. Lee. 2007. Use of a sulfated chitosan derivative to reduce bladder inflammation in the rat. Urology 70: 1014–1018. https://doi.org/10.1016/j.urology.2007.07.056.

    Article  PubMed  Google Scholar 

  29. Kim, Mi Kyung, Sang Woon Chung, Dae Hyun Kim, Ji Min Kim, Eun Kyeong Lee, Ji Young Kim, Young Mi Ha, et al. 2010. Modulation of age-related NF-κB activation by dietary zingerone via MAPK pathway. Experimental Gerontology 45. Pergamon: 419–426. https://doi.org/10.1016/J.EXGER.2010.03.005.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Amin, Mu Haibo, Wuxia Zhang, Guoting Cui, Jie Zhu, and Jinyou Duan. 2013. Chitosan coupling makes microbial biofilms susceptible to antibiotics. Scientific Reports 3. Nature Publishing Group. https://doi.org/10.1038/srep03364.

  31. Campana, Raffaella, Francesca Biondo, Francesca Mastrotto, Wally Baffone, and Luca Casettari. 2018. Chitosans as new tools against biofilms formation on the surface of silicone urinary catheters. International Journal of Biological Macromolecules 118. Elsevier B.V.: 2193–2200. https://doi.org/10.1016/j.ijbiomac.2018.07.088.

    Article  CAS  PubMed  Google Scholar 

  32. Vadekeetil, Anitha, Hina Saini, Sanjay Chhibber, and Kusum Harjai. 2016. Exploiting the antivirulence efficacy of an ajoene-ciprofloxacin combination against Pseudomonas aeruginosa biofilm associated murine acute pyelonephritis. Biofouling 32. Taylor and Francis Ltd: 371–382. https://doi.org/10.1080/08927014.2015.1137289.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Aiping, Wenjie Jin, Lanhua Yuan, Gongjun Yang, Hui Yu, and Wu. Hao. 2007. O-Carboxymethylchitosan-based novel gatifloxacin delivery system. Carbohydrate Polymers 68. Elsevier: 693–700. https://doi.org/10.1016/j.carbpol.2006.08.007.

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the financial support provided under INSPIRE programme of Department of Science and Technology (DST), Government of India. The fellowshop (DST-INSPIRE # IF140915) was provided to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum Harjai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Bose, S.K., Chhibber, S. et al. Exploring the Therapeutic Efficacy of Zingerone Nanoparticles in Treating Biofilm-Associated Pyelonephritis Caused by Pseudomonas aeruginosa in the Murine Model. Inflammation 43, 2344–2356 (2020). https://doi.org/10.1007/s10753-020-01304-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01304-y

KEY WORDS

Navigation