Skip to main content

Advertisement

Log in

Amorphous Calcium Phosphate NPs Mediate the Macrophage Response and Modulate BMSC Osteogenesis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The potential risk associated with ACP nanoparticles (ACP NPs) cultured with immune cells and their indirect effects on osteogenesis have not been studied deeply. This project aims to evaluate the safety of ACP NPs in macrophages, the responses of macrophages (macrophage polarization, the cytokine secretion pattern of macrophages and intracellular homeostasis) to ACP NPs and the effect of ACP NPs/macrophage-modulated environments on the osteogenic ability of BMSCs. The cell proliferation rate and apoptosis were detected by CCK-8 and Annexin V Apoptosis Detection kits. ROS and autophagy expression were evaluated by ROS test kits and Western blot (WB). Macrophage polarization and cytokine expression were determined by SEM, cytoskeletal staining, RT-PCR and ELISA. TMT™ quantitative protein analysis was used to evaluate protein expression. BMSC osteogenic differentiation was detected by ALP staining, Alizarin Red solution staining and RT-PCR. ACP NPs were safe to macrophages but promoted autophagy and induced ROS production at high concentrations. ACP NPs changed morphology of macrophages and induced polarization into M1 type, thus promoting the expression of inflammatory cytokines. ACP NPs/macrophage-modulated environments weakened the osteogenic ability of BMSCs. ACP NPs polarize macrophages into the M1 phenotype and change the cytokine secretion pattern. ACP NPs/macrophage-modulated environments weaken the osteogenic ability of BMSCs. ACP NPs may cause aseptic inflammation and attenuate osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Choi, H., N.J. Park, O. Jamiyandorj, M.H. Hong, S. Oh, Y.B. Park, and S. Kim. 2012. Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with synthetic cell binding peptide sequences. Journal of Periodontal & Implant Science 42 (5): 166–172.

    Article  CAS  Google Scholar 

  2. Velard, F., J. Braux, J. Amedee, and P. Laquerriere. 2013. Inflammatory cell response to calcium phosphate biomaterial particles: An overview. Acta Biomaterialia 9 (2): 4956–4963.

    Article  CAS  PubMed  Google Scholar 

  3. Accorsi-Mendonça, T., M.B. Conz, T.C. Barros, L.A. de Sena, A. Soares Gde, and J.M. Granjeiro. 2008. Physicochemical characterization of two deproteinized bovine xenografts. Brazilian Oral Research 22 (1): 5–10.

    Article  PubMed  Google Scholar 

  4. Daculsi, G., and J.P. Legeros. 1996. Three-dimensional defects in hydroxyapatite of biological interest. Journal of Biomedical Materials Research 31 (4): 495–501.

    Article  CAS  PubMed  Google Scholar 

  5. Prudhommeaux, F., C. Schiltz, F. Lioté, A. Hina, R. Champy, B. Bucki, E. Ortiz-Bravo, A. Meunier, C. Rey, and T. Bardin. 1996. Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis and Rheumatism 39 (8): 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J., D. Liu, B. Guo, X. Yang, X. Chen, and X. Zhu. 2017. fan Y, Zhang X. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomaterialia 51: 447–460.

    Article  CAS  PubMed  Google Scholar 

  7. Jones, J.A., D.T. Chang, H. Meyerson, E. Colton, I.K. Kwon, T. Matsuda, and J.M. Anderson. 2007. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. Journal of Biomedical Materials Research. Part A 83 (3): 585–596.

    Article  PubMed  CAS  Google Scholar 

  8. Oh, J., A.E. Riek, S. Weng, M. Petty, D. Kim, M. Colonna, M. Cella, and C. Bernal-Mizrachi. 2012. Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. The Journal of Biological Chemistry 287 (15): 11629–11641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rao, A.J., E. Gibon, T. Ma, Z. Yao, R.L. Smith, and S.B. Goodman. 2012. Revision joint replacement, wear particles, and macrophage polarization. Acta Biomaterialia 8 (7): 2815–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lotsari, A., A.K. Rajasekharan, M. Halvarsson, and M. Andersson. 2018. Transformation of amorphous calcium phosphate to bone-like apatite. Nature Communications 9 (1): 4170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Iafisco, M., L. Degli Esposti, G.B. Ramírez-Rodríguez, F. Carella, J. Gómez-Morales, A.C. Ionescu, E. Brambilla, A. Tampieri, and J.M. Delgado-López. 2018. Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Scientific Reports 8 (1): 17016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cai, X., B. Han, Y. Liu, F. Tian, F. Liang, and X. Wang. 2017. Chlorhexidine-loaded amorphous calcium phosphate nanoparticles for inhibiting degradation and inducing mineralization of type I collagen. ACS Applied Materials & Interfaces 9 (15): 12949–12958.

    Article  CAS  Google Scholar 

  13. Allegrini, Sergio, Jr., Antonio Carlos da Silva, Maristela Tsujita, Marcos Barbosa Salles, Sergio Alexandre Gehrke, and Francisco José Correa Braga. 2018. Amorphous calcium phosphate (ACP) in tissue repair process.81 (6): 579–589.

  14. Edwards, Felicity C., Amir Taheri, Sophie C. Dann, and Julian F. Dye. 2011. Characterization of cytolytic neutrophil activation in vitro by amorphous hydrated calcium phosphate as a model of biomaterial inflammation. Journal of Biomedical Materials Research. Part A 96 (3): 552–565.

    Article  PubMed  CAS  Google Scholar 

  15. Feng, G., C. Qin, X. Yi, J. Xia, J. Chen, X. Chen, T. Chen, and X. Jiang. 2018. Effect of novel bioresorbable scaffold composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles on inflammation and calcification of surrounding tissues after implantation. Journal of Materials Science. Materials in Medicine 29 (8): 112.

    Article  PubMed  CAS  Google Scholar 

  16. Klopfleisch, R. 2016. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers. Acta Biomaterialia 43: 3–13.

    Article  CAS  PubMed  Google Scholar 

  17. Brancato, S.K., and J.E. Albina. 2011. Wound macrophages as key regulators of repair: Origin, phenotype, and function. Am J Pathol 178 (1): 19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, S., J.A. Jones, Y. Xu, H.Y. Low, J.M. Anderson, and K.W. Leong. 2010. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials. 31 (13): 3479–3491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H.S., S.J. Stachelek, N. Tomczyk, M.J. Finley, R.J. Composto, and D.M. Eckmann. 2013. Correlating macrophage morphology and cytokine production resulting from biomaterial contact. Journal of Biomedical Materials Research. Part A 101 (1): 203–212.

    Article  PubMed  CAS  Google Scholar 

  20. Manke, A., L. Wang, and Y. Rojanasakul. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International 2013: 942916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gordon, P.B., I. Holen, M. Fosse, J.S. Røtnes, and P.O. Seglen. 1993. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. The Journal of Biological Chemistry 268 (35): 26107–26112.

    Article  CAS  PubMed  Google Scholar 

  22. Decuypere, J.P., G. Bultynck, and J.B. Parys. 2011. A dual role for Ca(2+) in autophagy regulation. Cell Calcium 50 (3): 242–250.

    Article  CAS  PubMed  Google Scholar 

  23. Cárdenas, C., R.A. Miller, I. Smith, T. Bui, J. Molgó, M. Müller, H. Vais, K.H. Cheung, J. Yang, I. Parker, C.B. Thompson, M.J. Birnbaum, K.R. Hallows, and J.K. Foskett. 2010. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell. 142 (2): 270–283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Williams, A., S. Sarkar, P. Cuddon, E.K. Ttofi, S. Saiki, F.H. Siddiqi, L. Jahreiss, A. Fleming, D. Pask, P. Goldsmith, C.J. O’Kane, R.A. Floto, and D.C. Rubinsztein. 2008. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chemical Biology 4 (5): 295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Høyer-Hansen, M., L. Bastholm, P. Szyniarowski, M. Campanella, G. Szabadkai, T. Farkas, K. Bianchi, N. Fehrenbacher, F. Elling, R. Rizzuto, I.S. Mathiasen, and M. Jäättelä. 2007. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25 (2): 193–205.

    Article  PubMed  CAS  Google Scholar 

  26. Chen, Z., S. Ni, S. Han, R. Crawford, S. Lu, F. Wei, J. Chang, C. Wu, and Y. Xiao. 2017. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale. 9 (2): 706–718.

    Article  CAS  PubMed  Google Scholar 

  27. Murray, P.J., J.E. Allen, S.K. Biswas, E.A. Fisher, D.W. Gilroy, S. Goerdt, S. Gordon, J.A. Hamilton, L.B. Ivashkiv, T. Lawrence, M. Locati, A. Mantovani, F.O. Martinez, J.L. Mege, D.M. Mosser, G. Natoli, J.P. Saeij, J.L. Schultze, K.A. Shirey, A. Sica, J. Suttles, I. Udalova, J.A. van Ginderachter, S.N. Vogel, and T.A. Wynn. 2014. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41 (1): 14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bain, C.C., and A. Schridde. 2733. Origin, differentiation, and function of intestinal macrophages. Frontiers in Immunology 2018 (27): 9.

    Google Scholar 

  29. Murray, P.J. 2017. Macrophage Polarization. Annual Review of Physiology 79: 541–566.

    Article  CAS  PubMed  Google Scholar 

  30. Hotchkiss, K.M., G.B. Reddy, S.L. Hyzy, Z. Schwartz, B.D. Boyan, and R. Olivares-Navarrete. 2016. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomaterialia 31: 425–434.

    Article  CAS  PubMed  Google Scholar 

  31. Mantovani, A., S.K. Biswas, M.R. Galdiero, A. Sica, and M. Locati. 2013. Macrophage plasticity and polarization in tissue repair and remodelling. The Journal of Pathology 229 (2): 176–185.

    Article  CAS  PubMed  Google Scholar 

  32. Pajarinen, J., V.P. Kouri, E. Jämsen, T.F. Li, J. Mandelin, and Y.T. Konttinen. 2013. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomaterialia 9 (11): 9229–9240.

    Article  CAS  PubMed  Google Scholar 

  33. Miao, X., X. Leng, Q. Zhang, et al. 2017. Int J Mol Sci 18 (2).

  34. Shi, M., Z. Chen, S. Farnaghi, T. Friis, X. Mao, Y. Xiao, and C. Wu. 2016. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomaterialia 30: 334–344.

    Article  CAS  PubMed  Google Scholar 

  35. Lucarelli, M., A.M. Gatti, G. Savarino, P. Quattroni, L. Martinelli, E. Monari, and D. Boraschi. 2004. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. European Cytokine Network 15 (4): 339–346.

    CAS  PubMed  Google Scholar 

  36. Yen, H.J., S.H. Hsu, and C.L. Tsai. 2009. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small. 5 (13): 1553–1561.

    Article  CAS  PubMed  Google Scholar 

  37. Nishanth, R.P., R.G. Jyotsna, J.J. Schlager, S.M. Hussain, and P. Reddanna. 2011. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology. 5 (4): 502–516.

    Article  CAS  PubMed  Google Scholar 

  38. Ma, Q.L., L.Z. Zhao, R.R. Liu, B.Q. Jin, W. Song, Y. Wang, Y.S. Zhang, L.H. Chen, and Y.M. Zhang. 2014. Improved implant osseointegration of a nanostructured titanium surface viamediation of macrophage polarization. Biomaterials. 35 (37): 9853–9867.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Z., A. Bachhuka, S. Han, F. Wei, S. Lu, R.M. Visalakshan, K. Vasilev, and Y. Xiao. 2017. Tuning chemistry and topography of nanoengineered surfaces to manipulateimmune response for bone regeneration applications. ACS Nano 11 (5): 4494–4506.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, C.L., Y.H. Sun, W.H. Yu, X.Z. yin, J. Weng, and B. Feng. 2018. Modulation of macrophage phenotype through controlled release of interleukin-4 from gelatine coatings on titanium surfaces. European Cells & Materials 36: 15–29.

    Article  CAS  Google Scholar 

  41. Jamalpoor, Z., A. Asgari, M.H. Lashkari, A. Mirshafiey, and M. Mohsenzadegan. 2018. Modulation of macrophage polarization for bone tissue engineering applications. Iranian Journal of Allergy, Asthma, and Immunology 17 (5): 398–408.

    Article  PubMed  Google Scholar 

  42. Zhang, Y., T. Böse, R.E. Unger, J.A. Jansen, C.J. Kirkpatrick, and J.J.J.P. van den Beucken. 2017. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell and Tissue Research 369 (2): 273–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Z., Y. Xie, H. Pan, L. Huang, and X. Zheng. 2018. Influence of patterned titanium coatings on polarization of macrophage and osteogenic differentiation of bone marrow stem cells. Journal of Biomaterials Applications 32 (7): 977–986.

    Article  CAS  PubMed  Google Scholar 

  44. Park, H.C., H. Quan, T. Zhu, Y. Kim, B. Kim, and H.C. Yang. 2017. The effects of M1 and M2 macrophages on odontogenic differentiation of human dental pulp cells. Journal of Endodontia 43 (4): 596–601.

    Article  Google Scholar 

  45. Chudinova, E.A., M.A. Surmeneva, A.S. Timin, T.E. Karpov, A. Wittmar, M. Ulbricht, A. Ivanova, K. Loza, O. Prymak, A. Koptyug, M. Epple, and R.A. Surmenev. 2018. Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles. Colloids and Surfaces. B, Biointerfaces 176: 130–139.

    Article  PubMed  CAS  Google Scholar 

  46. Zhao, F., B. Lei, X. Li, Y. Mo, R. Wang, D. Chen, and X. Chen. 2018. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 178: 36–47.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, W., F. Zhao, D. Huang, X. Fu, X. Li, and X. Chen. 2016. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration. ACS Applied Materials & Interfaces 8 (45): 30747–30758.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Fund (81600904 and 81771102), the High Technology Research and Development Program of China (863 program, 2015AA033502) and the incubation programme of Guangzhou Medical University (No. B185004177).

Author information

Authors and Affiliations

Authors

Contributions

LJC, HCL and LQS designed the research. LJC was responsible for characterizing ACP NPs and detecting macrophage polarization and cytokine expression. ROS and autophagy expression were evaluated by LJC and PYQ. TMT™ quantitative protein analysis and BMSC osteogenic differentiation were detected by LJC and PYQ. LJC generated the figures and drafted the manuscript, which was critically revised by HCL and LQS. All authors read, corrected and approved the manuscript.

Corresponding authors

Correspondence to Hongchen Liu or Longquan Shao.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 4451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Qiao, P., Liu, H. et al. Amorphous Calcium Phosphate NPs Mediate the Macrophage Response and Modulate BMSC Osteogenesis. Inflammation 44, 278–296 (2021). https://doi.org/10.1007/s10753-020-01331-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01331-9

KEY WORDS

Navigation