Skip to main content

Advertisement

Log in

Mice Deficient in NOX2 Display Severe Thymic Atrophy, Lymphopenia, and Reduced Lymphopoiesis in a Zymosan-Induced Model of Systemic Inflammation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Patients with chronic granulomatous disease (CGD) who have mutated phagocyte NADPH oxidase are susceptible to infections due to reduced reactive oxygen species production and exhibit autoimmune and inflammatory diseases in the absence of evident infection. Neutrophils and macrophages have been extensively studied since phagocyte NADPH oxidase is mainly found only in them, while the impact of its deficiency on lymphocyte cellularity is less well characterized. We showed herein a zymosan-induced systemic inflammation model that CGD mice deficient in the phagocyte NADPH oxidase gp91phox subunit (NOX2) exhibited more severe thymic atrophy associated with peripheral blood and splenic lymphopenia and reduced lymphopoiesis in the bone marrow in comparison with the wild-type mice. Conversely, the zymosan-exposed CGD mice suffered from more remarkable neutrophilic lung inflammation, circulating and splenic neutrophilia, and enhanced granulopoiesis compared with those in zymosan-exposed wild-type mice. Overall, this study provided evidence that NOX2 deficiency exhibits severe thymic atrophy and lymphopenia concomitant with enhanced neutrophilic inflammation in a zymosan-induced systemic inflammation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Winterbourn, C.C., A.J. Kettle, and M.B. Hampton. 2016. Reactive oxygen species and neutrophil function. Annu Rev Biochem 85: 765–792. https://doi.org/10.1146/annurev-biochem-060815-014442.

    Article  CAS  PubMed  Google Scholar 

  2. Nauseef, W.M., and R.A. Clark. 2019. Intersecting stories of the phagocyte NADPH oxidase and chronic granulomatous disease. Methods Mol Biol 1982: 3–16. https://doi.org/10.1007/978-1-4939-9424-3_1.

    Article  CAS  PubMed  Google Scholar 

  3. Nunes, P., N. Demaurex, and M.C. Dinauer. 2013. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic 14 (11): 1118–1131. https://doi.org/10.1111/tra.12115.

    Article  CAS  PubMed  Google Scholar 

  4. Arnold, D.E., and J.R. Heimall. 2017. A review of chronic granulomatous disease. Adv Ther 34 (12): 2543–2557. https://doi.org/10.1007/s12325-017-0636-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dinauer, M.C. 2016. Primary immune deficiencies with defects in neutrophil function. Hematology Am Soc Hematol Educ Program 2016 (1): 43–50. https://doi.org/10.1182/asheducation-2016.1.43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Levine, S., V.V. Smith, M. Malone, and N.J. Sebire. 2005. Histopathological features of chronic granulomatous disease (CGD) in childhood. Histopathology 47 (5): 508–516. https://doi.org/10.1111/j.1365-2559.2005.02258.x.

    Article  CAS  PubMed  Google Scholar 

  7. Schappi, M.G., V. Jaquet, D.C. Belli, and K.H. Krause. 2008. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 30 (3): 255–271. https://doi.org/10.1007/s00281-008-0119-2.

    Article  CAS  PubMed  Google Scholar 

  8. Segal, B.H., M.J. Grimm, A.N. Khan, W. Han, and T.S. Blackwell. 2012. Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 53 (1): 72–80. https://doi.org/10.1016/j.freeradbiomed.2012.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgenstern, D.E., M.A. Gifford, L.L. Li, C.M. Doerschuk, and M.C. Dinauer. 1997. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185 (2): 207–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pollock, J.D., D.A. Williams, M.A. Gifford, L.L. Li, X. Du, J. Fisherman, S.H. Orkin, C.M. Doerschuk, and M.C. Dinauer. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9 (2): 202–209.

    CAS  PubMed  Google Scholar 

  11. Aratani, Y., F. Kura, H. Watanabe, H. Akagawa, Y. Takano, K. Suzuki, M.C. Dinauer, N. Maeda, and H. Koyama. 2002. Relative contributions of myeloperoxidase and NADPH-oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med Mycol 40 (6): 557–563.

    CAS  PubMed  Google Scholar 

  12. Aratani, Y., F. Kura, H. Watanabe, H. Akagawa, Y. Takano, K. Suzuki, M.C. Dinauer, N. Maeda, and H. Koyama. 2002. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J Infect Dis 185 (12): 1833–1837.

    CAS  PubMed  Google Scholar 

  13. Marciano, B.E., C. Spalding, A. Fitzgerald, D. Mann, T. Brown, S. Osgood, L. Yockey, D.N. Darnell, L. Barnhart, J. Daub, L. Boris, A.P. Rump, V.L. Anderson, C. Haney, D.B. Kuhns, S.D. Rosenzweig, C. Kelly, A. Zelazny, T. Mason, S.S. DeRavin, E. Kang, J.I. Gallin, H.L. Malech, K.N. Olivier, G. Uzel, A.F. Freeman, T. Heller, C.S. Zerbe, and S.M. Holland. 2015. Common severe infections in chronic granulomatous disease. Clin Infect Dis 60 (8): 1176–1183. https://doi.org/10.1093/cid/ciu1154.

    Article  CAS  PubMed  Google Scholar 

  14. Dinauer, M.C., and S.H. Orkin. 1992. Chronic granulomatous disease. Annu Rev Med 43: 117–124. https://doi.org/10.1146/annurev.me.43.020192.001001.

    Article  CAS  PubMed  Google Scholar 

  15. Roos, D. 2016. Chronic granulomatous disease. Br Med Bull 118 (1): 50–63. https://doi.org/10.1093/bmb/ldw009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sillevis Smitt, J.H., J.D. Bos, R.S. Weening, and S.R. Krieg. 1990. Discoid lupus erythematosus-like skin changes in patients with autosomal recessive chronic granulomatous disease. Arch Dermatol 126 (12): 1656–1658. https://doi.org/10.1001/archderm.126.12.1656b.

    Article  CAS  PubMed  Google Scholar 

  17. Manzi, S., A.H. Urbach, A.B. McCune, H.A. Altman, S.S. Kaplan, T.A. Medsger Jr., and R. Ramsey-Goldman. 1991. Systemic lupus erythematosus in a boy with chronic granulomatous disease: case report and review of the literature. Arthritis Rheum 34 (1): 101–105. https://doi.org/10.1002/art.1780340116.

    Article  CAS  PubMed  Google Scholar 

  18. Magnani, A., P. Brosselin, J. Beaute, N. de Vergnes, R. Mouy, M. Debre, F. Suarez, et al. 2014. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol 134 (3): 655–662. e658. https://doi.org/10.1016/j.jaci.2014.04.014.

    Article  PubMed  Google Scholar 

  19. Marciano, B.E., S.D. Rosenzweig, D.E. Kleiner, V.L. Anderson, D.N. Darnell, S. Anaya-O'Brien, D.M. Hilligoss, H.L. Malech, J.I. Gallin, and S.M. Holland. 2004. Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114 (2): 462–468. https://doi.org/10.1542/peds.114.2.462.

    Article  PubMed  Google Scholar 

  20. Lee, K., H.Y. Won, M.A. Bae, J.H. Hong, and E.S. Hwang. 2011. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b + and Th/Treg cells. Proc Natl Acad Sci U S A 108 (23): 9548–9553. https://doi.org/10.1073/pnas.1012645108.

    Article  PubMed  PubMed Central  Google Scholar 

  21. van de Loo, F.A., M.B. Bennink, O.J. Arntz, R.L. Smeets, E. Lubberts, L.A. Joosten, P.L. van Lent, et al. 2003. Deficiency of NADPH oxidase components p47phox and gp91phox caused granulomatous synovitis and increased connective tissue destruction in experimental arthritis models. Am J Pathol 163 (4): 1525–1537.

    PubMed  PubMed Central  Google Scholar 

  22. Campbell, A.M., M. Kashgarian, and M.J. Shlomchik. 2012. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med 4 (157): 157ra141. https://doi.org/10.1126/scitranslmed.3004801.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Endo, D., K. Fujimoto, R. Hirose, H. Yamanaka, M. Homme, K.I. Ishibashi, N. Miura, N. Ohno, and Y. Aratani. 2017. Genetic phagocyte NADPH oxidase deficiency enhances nonviable Candida albicans-induced inflammation in mouse lungs. Inflammation 40 (1): 123–135. https://doi.org/10.1007/s10753-016-0461-9.

    Article  CAS  PubMed  Google Scholar 

  24. Goodridge, H.S., A.J. Wolf, and D.M. Underhill. 2009. Beta-glucan recognition by the innate immune system. Immunol Rev 230 (1): 38–50. https://doi.org/10.1111/j.1600-065X.2009.00793.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segal, B.H., W. Han, J.J. Bushey, M. Joo, Z. Bhatti, J. Feminella, C.G. Dennis, R.R. Vethanayagam, F.E. Yull, M. Capitano, P.K. Wallace, H. Minderman, J.W. Christman, M.B. Sporn, J. Chan, D.C. Vinh, S.M. Holland, L.R. Romani, S.L. Gaffen, M.L. Freeman, and T.S. Blackwell. 2010. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS One 5 (3): e9631. https://doi.org/10.1371/journal.pone.0009631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Potera, R.M., M. Cao, L.F. Jordan, R.T. Hogg, J.S. Hook, and J.G. Moreland. 2019. Alveolar macrophage chemokine secretion mediates neutrophilic lung injury in Nox2-deficient mice. Inflammation 42 (1): 185–198. https://doi.org/10.1007/s10753-018-0883-7.

    Article  CAS  PubMed  Google Scholar 

  27. Whitmore, L.C., K.L. Goss, E.A. Newell, B.M. Hilkin, J.S. Hook, and J.G. Moreland. 2014. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome. Am J Physiol Lung Cell Mol Physiol 307 (1): L71–L82. https://doi.org/10.1152/ajplung.00054.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whitmore, L.C., B.M. Hilkin, K.L. Goss, E.M. Wahle, T.T. Colaizy, P.M. Boggiatto, S.M. Varga, F.J. Miller, and J.G. Moreland. 2013. NOX2 protects against prolonged inflammation, lung injury, and mortality following systemic insults. J Innate Immun 5 (6): 565–580. https://doi.org/10.1159/000347212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Volkman, D.J., E.S. Buescher, J.I. Gallin, and A.S. Fauci. 1984. B cell lines as models for inherited phagocytic diseases: abnormal superoxide generation in chronic granulomatous disease and giant granules in Chediak-Higashi syndrome. J Immunol 133 (6): 3006–3009.

    CAS  PubMed  Google Scholar 

  30. Bleesing, J.J., M.M. Souto-Carneiro, W.J. Savage, M.R. Brown, C. Martinez, S. Yavuz, S. Brenner, R.M. Siegel, M.E. Horwitz, P.E. Lipsky, H.L. Malech, and T.A. Fleisher. 2006. Patients with chronic granulomatous disease have a reduced peripheral blood memory B cell compartment. J Immunol 176 (11): 7096–7103. https://doi.org/10.4049/jimmunol.176.11.7096.

    Article  CAS  PubMed  Google Scholar 

  31. Cotugno, N., A. Finocchi, A. Cagigi, G. Di Matteo, M. Chiriaco, S. Di Cesare, P. Rossi, A. Aiuti, P. Palma, and I. Douagi. 2015. Defective B-cell proliferation and maintenance of long-term memory in patients with chronic granulomatous disease. J Allergy Clin Immunol 135 (3): 753–761. e752. https://doi.org/10.1016/j.jaci.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  32. Moir, S., S.S. De Ravin, B.H. Santich, J.Y. Kim, J.G. Posada, J. Ho, C.M. Buckner, et al. 2012. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells. Blood 120 (24): 4850–4858. https://doi.org/10.1182/blood-2012-05-430959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ueda, Y., K. Yang, S.J. Foster, M. Kondo, and G. Kelsoe. 2004. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. J Exp Med 199 (1): 47–58. https://doi.org/10.1084/jem.20031104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Albuquerque, A.S., S.M. Fernandes, R. Tendeiro, R. Cheynier, M. Lucas, S.L. Silva, R.M.M. Victorino, and A.E. Sousa. 2017. Major CD4 T-cell depletion and immune senescence in a patient with chronic granulomatous disease. Front Immunol 8: 543. https://doi.org/10.3389/fimmu.2017.00543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heltzer, M., A.F. Jawad, J. Rae, J.T. Curnutte, and K.E. Sullivan. 2002. Diminished T cell numbers in patients with chronic granulomatous disease. Clin Immunol 105 (3): 273–278. https://doi.org/10.1006/clim.2002.5291.

    Article  CAS  PubMed  Google Scholar 

  36. Chiriaco, M., F. Casciano, G. Di Matteo, B. Gentner, A. Claps, S. Di Cesare, N. Cotugno, et al. 2018. Impaired X-CGD T cell compartment is gp91phox-NADPH oxidase independent. Clin Immunol 193: 52–59. https://doi.org/10.1016/j.clim.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  37. Koch, U., and F. Radtke. 2011. Mechanisms of T cell development and transformation. Annu Rev Cell Dev Biol 27: 539–562. https://doi.org/10.1146/annurev-cellbio-092910-154008.

    Article  CAS  PubMed  Google Scholar 

  38. Majumdar, S., and D. Nandi. 2018. Thymic atrophy: experimental studies and therapeutic interventions. Scand J Immunol 87 (1): 4–14. https://doi.org/10.1111/sji.12618.

    Article  CAS  PubMed  Google Scholar 

  39. Ueda, Y., M. Kondo, and G. Kelsoe. 2005. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201 (11): 1771–1780. https://doi.org/10.1084/jem.20041419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berzins, S.P., R.L. Boyd, and J.F. Miller. 1998. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J Exp Med 187 (11): 1839–1848. https://doi.org/10.1084/jem.187.11.1839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berzins, S.P., D.I. Godfrey, J.F. Miller, and R.L. Boyd. 1999. A central role for thymic emigrants in peripheral T cell homeostasis. Proc Natl Acad Sci U S A 96 (17): 9787–9791. https://doi.org/10.1073/pnas.96.17.9787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lekstrom-Himes, J.A., D.B. Kuhns, W.G. Alvord, and J.I. Gallin. 2005. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J Immunol 174 (1): 411–417.

    CAS  PubMed  Google Scholar 

  43. Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 14 (6): 523–535 doi:S1359610103000595 [pii].

    CAS  PubMed  Google Scholar 

  44. Rollins, B.J. 1997. Chemokines. Blood 90 (3): 909–928.

    CAS  PubMed  Google Scholar 

  45. Zlotnik, A., J. Morales, and J.A. Hedrick. 1999. Recent advances in chemokines and chemokine receptors. Crit Rev Immunol 19 (1): 1–47.

    CAS  PubMed  Google Scholar 

  46. Damas, J., and D. Lagneaux. 1991. Dissociation between the effects of zymosan on the systemic and pulmonary vessels of the rat. Br J Pharmacol 104 (2): 559–564. https://doi.org/10.1111/j.1476-5381.1991.tb12468.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inoue, S., K. Suzuki-Utsunomiya, Y. Okada, T. Taira, Y. Iida, N. Miura, T. Tsuji, T. Yamagiwa, S. Morita, T. Chiba, T. Sato, and S. Inokuchi. 2013. Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 41 (3): 810–819. https://doi.org/10.1097/CCM.0b013e318274645f.

    Article  PubMed  Google Scholar 

  48. Summers, C., S.M. Rankin, A.M. Condliffe, N. Singh, A.M. Peters, and E.R. Chilvers. 2010. Neutrophil kinetics in health and disease. Trends Immunol 31 (8): 318–324. https://doi.org/10.1016/j.it.2010.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fulcher, D.A., and A. Basten. 1997. B cell life span: a review. Immunol Cell Biol 75 (5): 446–455. https://doi.org/10.1038/icb.1997.69.

    Article  CAS  PubMed  Google Scholar 

  50. Hao, Z., and K. Rajewsky. 2001. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J Exp Med 194 (8): 1151–1164. https://doi.org/10.1084/jem.194.8.1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Obukhova, L.A., V.P. Skulachev, and N.G. Kolosova. 2009. Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats. Aging (Albany NY) 1 (4): 389–401. https://doi.org/10.18632/aging.100043.

    Article  CAS  Google Scholar 

  52. Uchio, R., Y. Hirose, S. Murosaki, Y. Yamamoto, and A. Ishigami. 2015. High dietary intake of vitamin C suppresses age-related thymic atrophy and contributes to the maintenance of immune cells in vitamin C-deficient senescence marker protein-30 knockout mice. Br J Nutr 113 (4): 603–609. https://doi.org/10.1017/s0007114514003857.

    Article  CAS  PubMed  Google Scholar 

  53. Majumdar, S., V. Adiga, A. Raghavan, S.R. Rananaware, and D. Nandi. 2019. Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 157 (1): 21–36. https://doi.org/10.1111/imm.13043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scofield, V.L., M. Yan, X. Kuang, S.J. Kim, D. Crunk, and P.K. Wong. 2009. The drug monosodium luminol (GVT) preserves thymic epithelial cell cytoarchitecture and allows thymocyte survival in mice infected with the T cell-tropic, cytopathic retrovirus ts1. Immunol Lett 122 (2): 159–169. https://doi.org/10.1016/j.imlet.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, D., and A. Liu. 2012. Administration of vitamin E prevents thymocyte apoptosis in murine sarcoma S180 tumor bearing mice. Cell Mol Biol (Noisy-le-grand) 58 Suppl:Ol1671-1679.

  56. Wang, D., N. Müller, K.G. McPherson, and H.M. Reichardt. 2006. Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells. J Immunol 176 (3): 1695–1702. https://doi.org/10.4049/jimmunol.176.3.1695.

    Article  CAS  PubMed  Google Scholar 

  57. Tonomura, N., K. McLaughlin, L. Grimm, R.A. Goldsby, and B.A. Osborne. 2003. Glucocorticoid-induced apoptosis of thymocytes: requirement of proteasome-dependent mitochondrial activity. J Immunol 170 (5): 2469–2478. https://doi.org/10.4049/jimmunol.170.5.2469.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Mary C. Dinauer, Indiana University School of Medicine, for kindly providing the CGD mice. We thank Saori Takatori for the technical support.

Funding

This work was supported in part by JSPS KAKENHI Grant number 17 K08126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Aratani.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, Y., Endo, D. & Aratani, Y. Mice Deficient in NOX2 Display Severe Thymic Atrophy, Lymphopenia, and Reduced Lymphopoiesis in a Zymosan-Induced Model of Systemic Inflammation. Inflammation 44, 371–382 (2021). https://doi.org/10.1007/s10753-020-01342-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01342-6

KEY WORDS

Navigation