Skip to main content

Advertisement

Log in

Oncotype DX testing in node-positive breast cancer strongly impacts chemotherapy use at a comprehensive cancer center

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

In 2016, we initiated standardized “reflex” Oncotype DX Recurrence Score (RS) testing for patients ≤ 65 years with pT1-2N0-1 HR+/HER2 breast cancer. Here, we examine RS testing patterns, RS distribution, and factors associated with chemotherapy use in patients with pN1 breast cancer.

Methods

Patients with stage I–III HR+/HER2 pN1 breast cancer treated with upfront surgery from February 2016 to March 2019 were identified. Clinical characteristics were compared between patients meeting reflex RS testing criteria, those with RS ordered outside of reflex criteria, and those without RS testing. RS was categorized as low (< 18), intermediate (18–30), and high (≥ 31). Multivariate logistic regression was performed to identify factors associated with adjuvant chemotherapy receipt. We examined 3-year recurrence-free survival (RFS) and overall survival (OS) stratified by chemotherapy use.

Results

We identified 347 HR+/HER2 pN1 patients; 272 (78.4%) received RS testing, and 194 (71.3%) met reflex criteria. RS was < 18 in 164 (61.4%) patients, 18–30 in 89 (32.7%) patients, and ≥ 31 in 16 (5.9%) patients. On multivariate analysis, RS < 18 (OR 0.47, 95% CI 0.24–0.92) was associated with lower odds of chemotherapy use, whereas presence of lymphovascular invasion (OR 1.77, 95% CI 1.03–3.07) and lobular subtype (OR 2.40, 95% CI 1.21–4.78) were associated with higher odds. No differences in 3-year RFS (p = 0.97) or OS (p = 0.19) based on chemotherapy receipt were observed.

Conclusion

Most RS-tested HR+/HER2 pN1 patients at our center had low genomic risk. A low RS independently influenced chemotherapy omission and in RS-tested patients, short-term outcomes were excellent. Our study demonstrates increased use of RS in guiding adjuvant treatment decisions in node-positive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, Ravdin P, Bugarini R, Baehner FL, Davidson NE, Sledge GW, Winer EP, Hudis C, Ingle JN, Perez EA, Pritchard KI, Shepherd L, Gralow JR, Yoshizawa C, Allred DC, Osborne CK, Hayes DF, Breast Cancer Intergroup of North A (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1):55–65. https://doi.org/10.1016/S1470-2045(09)70314-6

    Article  CAS  PubMed  Google Scholar 

  2. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, Quinn E, Dunbier A, Baum M, Buzdar A, Howell A, Bugarini R, Baehner FL, Shak S (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28(11):1829–1834. https://doi.org/10.1200/JCO.2009.24.4798

    Article  PubMed  Google Scholar 

  3. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. https://doi.org/10.1056/NEJMoa041588

    Article  CAS  PubMed  Google Scholar 

  4. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE Jr, Wickerham DL, Wolmark N (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734. https://doi.org/10.1200/JCO.2005.04.7985

    Article  CAS  PubMed  Google Scholar 

  5. Aebi S, Davidson T, Gruber G, Cardoso F, Group EGW (2011) Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(6):612–624. https://doi.org/10.1093/annonc/mdr371

    Article  Google Scholar 

  6. Gradishar WJ, Anderson BO, Balassanian R, Blair SL, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Giordano SH, Goetz M, Goldstein LJ, Hudis CA, Isakoff SJ, Marcom PK, Mayer IA, McCormick B, Moran M, Patel SA, Pierce LJ, Reed EC, Salerno KE, Schwartzberg LS, Smith KL, Smith ML, Soliman H, Somlo G, Telli M, Ward JH, Shead DA, Kumar R (2016) Invasive breast cancer version 1.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw 14(3):324. https://doi.org/10.6004/jnccn.2016.0037

    Article  Google Scholar 

  7. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC Jr, American Society of Clinical O (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25(33):5287–5312. https://doi.org/10.1200/JCO.2007.14.2364

    Article  CAS  PubMed  Google Scholar 

  8. Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, Weaver DL, Winchester DJ, Hortobagyi GN (2017) Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 67(4):290–303

    Article  Google Scholar 

  9. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin PM, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379(2):111–121. https://doi.org/10.1056/NEJMoa1804710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Penault-Llorca F, Filleron T, Asselain B, Baehner FL, Fumoleau P, Lacroix-Triki M, Anderson JM, Yoshizawa C, Cherbavaz DB, Shak S, Roca L, Sagan C, Lemonnier J, Martin AL, Roche H (2018) The 21-gene Recurrence Score(R) assay predicts distant recurrence in lymph node-positive, hormone receptor-positive, breast cancer patients treated with adjuvant sequential epirubicin- and docetaxel-based or epirubicin-based chemotherapy (PACS-01 trial). BMC Cancer 18(1):526. https://doi.org/10.1186/s12885-018-4331-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mamounas EP, Tang G, Paik S, Baehner FL, Liu Q, Jeong JH, Kim SR, Butler SM, Jamshidian F, Cherbavaz DB, Sing AP, Shak S, Julian TB, Lembersky BC, Lawrence Wickerham D, Costantino JP, Wolmark N (2018) 21-Gene Recurrence Score for prognosis and prediction of taxane benefit after adjuvant chemotherapy plus endocrine therapy: results from NSABP B-28/NRG Oncology. Breast Cancer Res Treat 168(1):69–77. https://doi.org/10.1007/s10549-017-4550-8

    Article  PubMed  Google Scholar 

  12. Stemmer SM, Klang SH, Ben-Baruch N, Geffen DB, Steiner M, Soussan-Gutman L, Merling S, Svedman C, Rizel S, Lieberman N (2013) The impact of the 21-gene Recurrence Score assay on clinical decision-making in node-positive (up to 3 positive nodes) estrogen receptor-positive breast cancer patients. Breast Cancer Res Treat 140(1):83–92. https://doi.org/10.1007/s10549-013-2603-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stemmer SM, Steiner M, Rizel S, Geffen DB, Nisenbaum B, Peretz T, Soussan-Gutman L, Bareket-Samish A, Isaacs K, Rosengarten O, Fried G, McCullough D, Svedman C, Shak S, Liebermann N, Ben-Baruch N (2017) Clinical outcomes in ER+ HER2 -node-positive breast cancer patients who were treated according to the Recurrence Score results: evidence from a large prospectively designed registry. NPJ Breast Cancer 3:32. https://doi.org/10.1038/s41523-017-0033-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petkov VI, Miller DP, Howlader N, Gliner N, Howe W, Schussler N, Cronin K, Baehner FL, Cress R, Deapen D, Glaser SL, Hernandez BY, Lynch CF, Mueller L, Schwartz AG, Schwartz SM, Stroup A, Sweeney C, Tucker TC, Ward KC, Wiggins C, Wu XC, Penberthy L, Shak S (2016) Breast-cancer-specific mortality in patients treated based on the 21-gene assay: a SEER population-based study. NPJ Breast Cancer 2:16017. https://doi.org/10.1038/npjbcancer.2016.17

    Article  PubMed  PubMed Central  Google Scholar 

  15. Losk K, Freedman RA, Lin NU, Golshan M, Pochebit SM, Lester SC, Natsuhara K, Camuso K, King TA, Bunnell CA (2017) Implementation of surgeon-initiated gene expression profile testing (Onco type DX) among patients with early-stage breast cancer to reduce delays in chemotherapy initiation. J Oncol Pract 13(9):e815–e820. https://doi.org/10.1200/JOP.2017.023788

    Article  PubMed  Google Scholar 

  16. Natsuhara KH, Losk K, King TA, Lin NU, Camuso K, Golshan M, Pochebit S, Brock JE, Bunnell CA, Freedman RA (2019) Impact of genomic assay testing and clinical factors on chemotherapy use after implementation of standardized testing criteria. Oncologist 24(5):595–602. https://doi.org/10.1634/theoncologist.2018-0154

    Article  CAS  PubMed  Google Scholar 

  17. Roberts MC, Miller DP, Shak S, Petkov VI (2017) Breast cancer-specific survival in patients with lymph node-positive hormone receptor-positive invasive breast cancer and Oncotype DX Recurrence Score results in the SEER database. Breast Cancer Res Treat 163(2):303–310. https://doi.org/10.1007/s10549-017-4162-3

    Article  PubMed  Google Scholar 

  18. Bello DM, Russell C, McCullough D, Tierno M, Morrow M (2018) Lymph node status in breast cancer does not predict tumor biology. Ann Surg Oncol 25(10):2884–2889. https://doi.org/10.1245/s10434-018-6598-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iorgulescu JB, Freedman RA, Lester SC, Mittendorf EA, Brock JE (2019) 21-gene recurrence score adds significant value for grade 3 breast cancers: results from a National Cohort. JCO Precis Oncol 3:1–15. https://doi.org/10.1200/PO.19.00029

    Article  Google Scholar 

  20. Jasem J, Fisher CM, Amini A, Shagisultanova E, Rabinovitch R, Borges VF, Elias A, Kabos P (2017) The 21-gene recurrence score assay for node-positive, early-stage breast cancer and impact of RxPONDER trial on chemotherapy decision-making: have clinicians already decided? J Natl Compr Canc Netw 15(4):494–503. https://doi.org/10.6004/jnccn.2017.0049

    Article  PubMed  Google Scholar 

  21. Cardoso F, vant Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M, Glas AM, Golfinopoulos V, Goulioti T, Knox S, Matos E, Meulemans B, Neijenhuis PA, Nitz U, Passalacqua R, Ravdin P, Rubio IT, Saghatchian M, Smilde TJ, Sotiriou C, Stork L, Straehle C, Thomas G, Thompson AM, van der Hoeven JM, Vuylsteke P, Bernards R, Tryfonidis K, Rutgers E, Piccart M, Investigators M (2016) 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375(8):717–729. https://doi.org/10.1056/NEJMoa1602253

    Article  CAS  PubMed  Google Scholar 

  22. Gluz O, Nitz UA, Christgen M, Kates RE, Shak S, Clemens M, Kraemer S, Aktas B, Kuemmel S, Reimer T, Kusche M, Heyl V, Lorenz-Salehi F, Just M, Hofmann D, Degenhardt T, Liedtke C, Svedman C, Wuerstlein R, Kreipe HH, Harbeck N (2016) West german study group phase III PlanB trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment. J Clin Oncol 34(20):2341–2349. https://doi.org/10.1200/JCO.2015.63.5383

    Article  PubMed  Google Scholar 

  23. Nitz U, Gluz O, Christgen M, Kates RE, Clemens M, Malter W, Nuding B, Aktas B, Kuemmel S, Reimer T, Stefek A, Lorenz-Salehi F, Krabisch P, Just M, Augustin D, Liedtke C, Chao C, Shak S, Wuerstlein R, Kreipe HH, Harbeck N (2017) Reducing chemotherapy use in clinically high-risk, genomically low-risk pN0 and pN1 early breast cancer patients: five-year data from the prospective, randomised phase 3 West German Study Group (WSG) PlanB trial. Breast Cancer Res Treat 165(3):573–583. https://doi.org/10.1007/s10549-017-4358-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, Watson D, Geyer CE Jr, Wickerham DL, Wolmark N (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28(10):1677–1683. https://doi.org/10.1200/JCO.2009.23.7610

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mamounas EP, Liu Q, Paik S, Baehner FL, Tang G, Jeong JH, Kim SR, Butler SM, Jamshidian F, Cherbavaz DB, Sing AP, Shak S, Julian TB, Lembersky BC, Wickerham DL, Costantino JP, Wolmark N (2017) 21-Gene recurrence score and locoregional recurrence in node-positive/ER-positive breast cancer treated with chemo-endocrine therapy. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djw259

    Article  PubMed  PubMed Central  Google Scholar 

  26. Woodward WA, Barlow WE, Jagsi R, Buchholz TA, Shak S, Baehner F, Whelan TJ, Davidson NE, Ingle JN, King TA, Ravdin PM, Osborne CK, Tripathy D, Livingston RB, Gralow JR, Hortobagyi GN, Hayes DF, Albain KS (2020) Association between 21-gene assay recurrence score and locoregional recurrence rates in patients with node-positive breast cancer. JAMA Oncol 6(4):505–511. https://doi.org/10.1001/jamaoncol.2019.5559

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

RAF would like to acknowledge the National Cancer Institute (R21CA227615-01A1), the American Cancer Society (125912-MRSG-14-240-01-CPPB), and Susan G. Komen for the Cure (CCRCR18552788) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katya Losk.

Ethics declarations

Conflicts of interest

RAF reports institutional research funding from Eisai and Puma. EAM reports scientific advisory board participation (and compensation) for Genomic Health/Exact Sciences. NUL reports institutional research funding from Genentech, Pfizer, Merck, Seattle Genetics; and consultant/advisor role for Puma, Seattle Genetics, Daiichi-Sankyo, Denali Therapeutics, California Institute for Regenerative Medicine. EPW reports consultant/advisor role for Genomic Health/Exact Sciences. TK reports speaker’s fees from Genomic Health/Exact Sciences. All other authors report no disclosures.

Research involving human participants

As this is a secondary analysis of previously collected data, this study was exempt from review by the Dana-Farber/Harvard Cancer Center Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losk, K., Freedman, R.A., Laws, A. et al. Oncotype DX testing in node-positive breast cancer strongly impacts chemotherapy use at a comprehensive cancer center. Breast Cancer Res Treat 185, 215–227 (2021). https://doi.org/10.1007/s10549-020-05931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05931-9

Keywords

Navigation