Skip to main content
Log in

The Effects of NaCl and Temperature on Growth and Survival of Yeast Strains Isolated from Danish Cheese Brines

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Yeasts play an important role in cheese making, by contributing to microbial community establishment and improving flavor. This study aimed at investigating the impact of NaCl and temperature on growth and survival of 20 strains belonging to the yeast species Candida intermedia (2 strains), Debaryomyces hansenii (11), Kluyveromyces lactis (1), Papiliotrema flavescens (1), Rhodotorula glutinis (1), Sterigmatomyces halophilus (2) and Yamadazyma triangularis (2) isolated from Danish cheese brines. All yeasts could grow in Malt Yeast Glucose Peptone (MYGP) medium with low NaCl (≤ 4%, w/v) concentrations at 25 °C and 16 °C. Further, none of the strains, except for one strain of D. hansenii (KU-9), were able to grow under a condition mimicking cheese brine (MYGP with 23% (w/v) NaCl and 6.3 g/L lactate) at 25 °C, while all yeasts could grow at 16 °C, except for the two strains of C. intermedia. In the survival experiment, D. hansenii, S. halophilus and Y. triangularis survived in MYGP with 23% (w/v) NaCl throughout 13.5 days at 25 °C, with Y. triangularis and S. halophilus being the most NaCl tolerant, while the remaining yeasts survived for less than 7 days. These results enable the selection of relevant yeasts from cheese brines for potential use in the cheese industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Legg AK, Carr AJ, Bennett RJ, Johnston KA (2017) General aspects of cheese technology. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, 4th edn. Elsevier, Amsterdam, pp 643–675. https://doi.org/10.1016/S1874-558X(04)80038-1

    Chapter  Google Scholar 

  2. Marino M, Innocente N, Maifreni M et al (2017) Diversity within Italian cheesemaking brine-associated bacterial communities evidenced by massive parallel 16S rRNA gene tag sequencing. Front Microbiol 8:1–13. https://doi.org/10.3389/fmicb.2017.02119

    Article  Google Scholar 

  3. Vermote L, Verce M, De Vuyst L, Weckx S (2018) Amplicon and shotgun metagenomic sequencing indicates that microbial ecosystems present in cheese brines reflect environmental inoculation during the cheese production process. Int Dairy J 87:44–53. https://doi.org/10.1016/j.idairyj.2018.07.010

    Article  CAS  Google Scholar 

  4. Petersen K, Westall S, Jespersen L (2002) Microbial succession of Debaryomyces hansenii strains during the production of Danish surfaced-ripened cheeses. J Dairy Sci 85:478–486. https://doi.org/10.3168/jds.S0022-0302(02)74098-8

    Article  PubMed  CAS  Google Scholar 

  5. Jaeger B, Hoppe-Seyler T, Bockelmann W, Heller K (2002) The influence of the brine microflora on the ripening of smear cheeses. Milchwissenschaft 57:645–648

    CAS  Google Scholar 

  6. Irlinger F, Layec S, Helinck S, Dugat-Bony E (2015) Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol Lett 362:1–11. https://doi.org/10.1093/femsle/fnu015

    Article  PubMed  CAS  Google Scholar 

  7. Ryssel M, Johansen P, Al-Soud WA et al (2015) Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques. Int J Food Microbiol 215:124–130. https://doi.org/10.1016/j.ijfoodmicro.2015.09.012

    Article  PubMed  CAS  Google Scholar 

  8. Søndergaard L, Ryssel M, Svendsen C et al (2015) Impact of NaCl reduction in Danish semi-hard Samsoe cheeses on proliferation and autolysis of DL-starter cultures. Int J Food Microbiol 213:59–70. https://doi.org/10.1016/j.ijfoodmicro.2015.06.031

    Article  PubMed  CAS  Google Scholar 

  9. Schirmer BCT, Heir E, Lindstedt BA et al (2014) Use of used vs. fresh cheese brines and the effect of pH and salt concentration on the survival of Listeria monocytogenes. J Dairy Res 81:113–119. https://doi.org/10.1017/S0022029913000666

    Article  PubMed  CAS  Google Scholar 

  10. Haastrup MK, Johansen P, Malskær AH et al (2018) Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int J Food Microbiol 285:173–187. https://doi.org/10.1016/j.ijfoodmicro.2018.08.015

    Article  PubMed  CAS  Google Scholar 

  11. Mounier J, Goerges S, Gelsomino R et al (2006) Sources of the adventitious microflora of a smear-ripened cheese. J Appl Microbiol 101:668–681. https://doi.org/10.1111/j.1365-2672.2006.02922.x

    Article  PubMed  CAS  Google Scholar 

  12. Montel M-C, Buchin S, Mallet A et al (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154. https://doi.org/10.1016/j.ijfoodmicro.2014.02.019

    Article  PubMed  Google Scholar 

  13. Norkrans B (1968) Studies on marine occurring yeasts: respiration, fermentation and salt tolerance. Arch Mikrobiol 62:358–372. https://doi.org/10.1007/BF00425641

    Article  Google Scholar 

  14. Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241. https://doi.org/10.1016/j.mycres.2009.09.002

    Article  PubMed  CAS  Google Scholar 

  15. Norkrans B (1966) Studies on marine occurring yeasts: growth related to pH, NaCl concentration and temperature. Arch Mikrobiol 54:374–392. https://doi.org/10.1007/BF00406719

    Article  Google Scholar 

  16. Aguiar C, Lucas C (2000) Yeasts killer/sensitivity phenotypes and halotolerance. Food Technol Biotechnol 38:39–46

    CAS  Google Scholar 

  17. Binetti A, Carrasco M, Reinheimer J, Suárez V (2013) Yeasts from autochthonal cheese starters: technological and functional properties. J Appl Microbiol 115:434–444. https://doi.org/10.1111/jam.12228

    Article  PubMed  CAS  Google Scholar 

  18. Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20. https://doi.org/10.1111/j.1541-4337.2004.tb00057.x

    Article  CAS  Google Scholar 

  19. Turk M, Montiel V, Žigon D et al (2007) Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology 153:3586–3592. https://doi.org/10.1099/mic.0.2007/009563-0

    Article  PubMed  CAS  Google Scholar 

  20. Masoud W, Jakobsen M (2005) The combined effects of pH, NaCl and temperature on growth of cheese ripening cultures of Debaryomyces hansenii and coryneform bacteria. Int Dairy J 15:69–77. https://doi.org/10.1016/j.idairyj.2004.05.008

    Article  CAS  Google Scholar 

  21. Liu X, Jia B, Sun X et al (2015) Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J Food Sci 80:M800–M808. https://doi.org/10.1111/1750-3841.12813

    Article  PubMed  CAS  Google Scholar 

  22. Roberts TA, Baranyo J (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294. https://doi.org/10.1016/0168-1605(94)90157-0

    Article  PubMed  Google Scholar 

  23. Bockelmann W, Hoppe-Seyler T (2001) The surface flora of bacterial smear-ripened cheeses from cow’s and goat’s milk. Int Dairy J 11:307–314. https://doi.org/10.1016/S0958-6946(01)00060-7

    Article  CAS  Google Scholar 

  24. Gori K, Ryssel M, Arneborg N, Jespersen L (2013) Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses. Microb Ecol 65:602–615. https://doi.org/10.1007/s00248-012-0138-3

    Article  PubMed  CAS  Google Scholar 

  25. Petersen KM, Jespersen L (2004) Genetic diversity of the species Debaryomyces hansenii and the use of chromosome polymorphism for typing of strains isolated from surface-ripened cheeses. J Appl Microbiol 97:205–213. https://doi.org/10.1111/j.1365-2672.2004.02293.x

    Article  PubMed  CAS  Google Scholar 

  26. Mortensen HD, Gori K, Siegumfeldt H et al (2007) Relationship between growth and pH gradients of individual cells of Debaryomyces hansenii as influenced by NaCl and solid substrate. Lett Appl Microbiol 44:279–285. https://doi.org/10.1111/j.1472-765X.2006.02067.x

    Article  PubMed  CAS  Google Scholar 

  27. Ali I, Kanhayuwa L, Rachdawong S, Rakshit SK (2013) Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann Microbiol 63:887–895. https://doi.org/10.1007/s13213-012-0540-6

    Article  Google Scholar 

  28. Haque MA, Seo WT, Hwang CE et al (2015) Culture-independent analysis of yeast diversity in Korean traditional fermented soybean foods (doenjang and kanjang) based on 26S rRNA sequence. J Korean Soc Appl Biol Chem 58:377–385. https://doi.org/10.1007/s13765-015-0030-1

    Article  Google Scholar 

  29. Stellato G, De FF, La SA et al (2015) Coexistence of lactic acid bacteria and potential spoilage microbiota. Appl Environ Microbiol 81:7893–7904. https://doi.org/10.1128/AEM.02294-15.Editor

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Roostita R (2002) The occurrence and growth of yeasts in Camembert and Blue-veined cheeses. Int J Food Microbiol 28:393–404. https://doi.org/10.1016/0168-1605(95)00018-6

    Article  Google Scholar 

  31. Pereira-Dias S, Potes ME, Marinho A et al (2000) Characterisation of yeast flora isolated from an artisanal Portuguese ewes’ cheese. Int J Food Microbiol 60:55–63. https://doi.org/10.1016/S0168-1605(00)00323-8

    Article  PubMed  CAS  Google Scholar 

  32. Stratford M (2006) Food and beverage spoilage yeasts. In: Querol A (ed) Yeasts in food and beverages. Springer, Berlin, pp 335–379

    Chapter  Google Scholar 

  33. Sundh I, Melin P (2011) Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie Van Leeuwenhoek 99:113–119. https://doi.org/10.1007/s10482-010-9528-z

    Article  PubMed  Google Scholar 

  34. Gabaldón T, Naranjo Ortiz MÁ, Marcet Houben M (2016) Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Res 16(6):fow064. https://doi.org/10.1093/femsyr/fow064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Valderrama M-J, de Silóniz MI, Gonzalo P, Peinado JM (1999) A differential medium for the isolation of Kluyveromyces marxianus and Kluyveromyces lactis from dairy products. J Food Prot 62:189–193. https://doi.org/10.4315/0362-028X-62.2.189

    Article  PubMed  CAS  Google Scholar 

  36. Jaiboon K, Lertwattanasakul N, Limtong P, Limtong S (2016) Yeasts from peat in a tropical peat swamp forest in Thailand and their ability to produce ethanol, indole-3-acetic acid and extracellular enzymes. Mycol Prog 15:755–770. https://doi.org/10.1007/s11557-016-1205-9

    Article  Google Scholar 

  37. Welthagen JJ, Viljoen BC (1999) The isolation and identification of yeasts obtained during the manufacture and ripening of Cheddar cheese. Food Microbiol 16:63–73. https://doi.org/10.1006/fmic.1998.0219

    Article  Google Scholar 

  38. Sørensen BB, Jakobsen M (1997) The combined effects of temperature, pH and NaCl on growth of Debaryomyces hansenii analyzed by flow cytometry and predictive microbiology. Int J Food Microbiol 34:209–220. https://doi.org/10.1016/S0168-1605(96)01192-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was conducted as a part of the Danish InBrine project. The authors are grateful to the Danish Dairy Research Foundation (MFF) and the Chinese Scholarship Council (CSC201706350054 and CSC201706350030) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

LZ and CH conducted the experiments, analyzed data and prepared the manuscript draft. AHM supervised part of the experiments. LJ and NA designed and supervised the experiments and revised the manuscript. PGJ analyzed data and revised the manuscript. All authors contributed with result interpretation, read and approved the final draft.

Corresponding author

Correspondence to Pernille Greve Johansen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, C., Malskær, A.H. et al. The Effects of NaCl and Temperature on Growth and Survival of Yeast Strains Isolated from Danish Cheese Brines. Curr Microbiol 77, 3377–3384 (2020). https://doi.org/10.1007/s00284-020-02185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02185-y

Navigation