Skip to main content
Log in

Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Haloperidol is a typical antipsychotic drug commonly used to treat a broad range of psychiatric disorders related to dysregulations in the neurotransmitter dopamine (DA). DA modulates important physiologic functions and perturbations in Caenorhabditis elegans (C. elegans) and, its signaling have been associated with alterations in behavioral, molecular, and morphologic properties in C. elegans. Here, we evaluated the possible involvement of dopaminergic receptors in the onset of these alterations followed by haloperidol exposure. Haloperidol increased lifespan and decreased locomotor behavior (basal slowing response, BSR, and locomotion speed via forward speed) of the worms. Moreover, locomotion speed recovered to basal conditions upon haloperidol withdrawal. Haloperidol also decreased DA levels, but it did not alter neither dop-1, dop-2, and dop-3 gene expression, nor CEP dopaminergic neurons’ morphology. These effects are likely due to haloperidol’s antagonism of the D2-type DA receptor, dop-3. Furthermore, this antagonism appears to affect mechanistic pathways involved in the modulation and signaling of neurotransmitters such as octopamine, acetylcholine, and GABA, which may underlie at least in part haloperidol’s effects. These pathways are conserved in vertebrates and have been implicated in a range of disorders. Our novel findings demonstrate that the dop-3 receptor plays an important role in the effects of haloperidol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Engleman EA, Katner SN, Neal-Beliveau BS (2016) Caenorhabditis elegans as a model to study the molecular and genetic mechanisms of drug addiction. In: Progress in Molecular Biology and Translational Science

  2. de Bono M, Villu Maricq A (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci. https://doi.org/10.1146/annurev.neuro.27.070203.144259

  3. ER Sawin, R Ranganathan, HR Horvitz (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron

  4. Nass R, Hall DH, Miller DM, Blakely RD (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99:3264–3269. https://doi.org/10.1073/pnas.042497999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen FH, Skjørringe T, Yasmeen S, Arends NV, Sahai MA, Erreger K, Andreassen TF, Holy M et al (2014) Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. J Clin Invest 124:3107–3120. https://doi.org/10.1172/JCI73778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Solanto MV (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. In: Behavioural Brain Research

  7. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  Google Scholar 

  8. Hornykiewicz O (2006) The discovery of dopamine deficiency in the parkinsonian brain. In: Journal of Neural Transmission, Supplement

  9. Mersha M, Formisano R, McDonald R et al (2013) GPA-14, a Gαi subunit mediates dopaminergic behavioral plasticity in C. elegans. Behav Brain Funct. https://doi.org/10.1186/1744-9081-9-16

  10. Hills T, Brockie PJ, Maricq AV (2004) Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 24:1217–1225. https://doi.org/10.1523/JNEUROSCI.1569-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhen M, Samuel ADT (2015) C. elegans locomotion: small circuits, complex functions. Curr Opin Neurobiol

  12. Kang L, Gao J, Schafer WR, Xie Z, Xu XZS (2010) C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 67:381-391. https://doi.org/10.1016/j.neuron.2010.06.032

  13. (2008) WormAtlas. Choice Rev Online. https://doi.org/10.5860/choice.46-0292

  14. Maeder CI, Kim JI, Liang X, Kaganovsky K, Shen A, Li Q, Li Z, Wang S et al (2018) The THO complex coordinates transcripts for synapse development and dopamine neuron survival. Cell. 174:1436–1449.e20. https://doi.org/10.1016/j.cell.2018.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI (2013) Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–1035. https://doi.org/10.1016/j.cell.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and behavioral state of C. elegans by sensory perception and the egl-4 cGMP-dependent protein kinase. Neuron. https://doi.org/10.1016/S0896-6273(02)01093-0

  17. Suo S, Sasagawa N, Ishiura S (2003) Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem 86:869–878. https://doi.org/10.1046/j.1471-4159.2003.01896.x

    Article  CAS  PubMed  Google Scholar 

  18. Chase DL, Koelle MR (2007) Biogenic amine neurotransmitters in C. elegans. WormBook

  19. Pandey P, Mersha MD, Dhillon HS (2013) A synergistic approach towards understanding the functional significance of dopamine receptor interactions. J Mol Signal 8:1-8. https://doi.org/10.1186/1750-2187-8-13

  20. Sanyal S, Wintle RF, Kindt KS, , Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hébert TE, van der Kooy D, Schafer WR, Culotti JG, van Tol HHM (2004) Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 23:473-482. https://doi.org/10.1038/sj.emboj.7600057

  21. Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096–1103. https://doi.org/10.1038/nn1316

    Article  CAS  PubMed  Google Scholar 

  22. Suo S, Culotti JG, Van Tol HHM (2009) Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO J. https://doi.org/10.1038/emboj.2009.194

  23. Kindt KS, Quast KB, Giles AC et al (2007) Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron. https://doi.org/10.1016/j.neuron.2007.07.023

  24. Ezak MJ, Ferkey DM (2010) The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One. https://doi.org/10.1371/journal.pone.0009487

  25. Ezcurra M, Tanizawa Y, Swoboda P, Schafer WR (2011) Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J. https://doi.org/10.1038/emboj.2011.22

  26. Chase DL, Koelle MR (2004) Genetic analysis of RGS protein function in Caenorhabditis elegans. Methods Enzymol. https://doi.org/10.1016/S0076-6879(04)89018-9

  27. Allen AT, Maher KN, Wani KA, Betts KE, Chase DL (2011) Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics. 188:579–590. https://doi.org/10.1534/genetics.111.128512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reckziegel P, Chen P, Caito S, Gubert P, Soares FAA, Fachinetto R, Aschner M (2016) Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans. Arch Toxicol 90:633–645. https://doi.org/10.1007/s00204-015-1451-7

    Article  CAS  PubMed  Google Scholar 

  29. Refai O, Blakely RD (2019) Blockade and reversal of swimming-induced paralysis in C. elegans by the antipsychotic and D2-type dopamine receptor antagonist azaperone. Neurochem Int. https://doi.org/10.1016/j.neuint.2018.05.013

  30. Omura DT, Clark DA, Samuel ADT, Horvitz HR (2012) Dopamine signaling is essential for precise rates of locomotion by C. elegans. PLoS One. https://doi.org/10.1371/journal.pone.0038649

  31. Akinyemi AJ, Miah MR, Ijomone OM, Tsatsakis A, Soares FAA, Tinkov AA, Skalny AV, Venkataramani V et al (2019) Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: involvement of the dopamine transporter. Toxicol Reports 6:833–840. https://doi.org/10.1016/j.toxrep.2019.08.001

    Article  CAS  Google Scholar 

  32. Chen P, DeWitt MR, Bornhorst J et al (2015) Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease. Metallomics. https://doi.org/10.1039/c4mt00292j

  33. Wang D, Yu Y, Li Y et al (2014) Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans e115985. PLoS One. https://doi.org/10.1371/journal.pone.0115985

  34. Manalo RVM, Medina PMB (2018) Caffeine protects dopaminergic neurons from dopamine-induced neurodegeneration via synergistic adenosine-dopamine D2-like receptor interactions in transgenic Caenorhabditis elegans. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00137

  35. Dagenhardt J, Trinh A, Sumner H, Scott J, Aamodt E, Dwyer DS (2017) Insulin signaling deficiency produces immobility in Caenorhabditis elegans that models diminished motivation states in man and responds to antidepressants. Mol Neuropsychiatry 3:97–107. https://doi.org/10.1159/000478049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monte GG, Nani JV, de Almeida Campos MR, Dal Mas C, Marins LAN, Martins LG, Tasic L, Mori MA et al (2019) Impact of nuclear distribution element genes in the typical and atypical antipsychotics effects on nematode Caenorhabditis elegans: putative animal model for studying the pathways correlated to schizophrenia. Prog Neuro-Psychopharmacology Biol Psychiatry 92:19–30. https://doi.org/10.1016/j.pnpbp.2018.12.010

    Article  CAS  Google Scholar 

  37. Karmacharya R, Lynn SK, Demarco S et al (2011) Behavioral effects of clozapine: Involvement of trace amine pathways in C. elegans and M. musculus. Brain Res. https://doi.org/10.1016/j.brainres.2011.04.010

  38. Dwyer SD, Poonam A, Rashmi T, et al (2015) Social feeding in Caenorhabditis elegans is modulated by antipsychotic drugs and calmodulin and may serve as a protophenotype for asociality. Neuropharmacology

  39. Donohoe DR, Weeks K, Aamodt EJ, Dwyer DS (2008) Antipsychotic drugs alter neuronal development including ALM neuroblast migration and PLM axonal outgrowth in Caenorhabditis elegans. Int J Dev Neurosci 26:371-380. https://doi.org/10.1016/j.ijdevneu.2007.08.021

  40. Donohoe DR, Aamodt EJ, Osborn E, Dwyer DS (2006) Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors. Pharmacol Res 54:361–372. https://doi.org/10.1016/j.phrs.2006.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCormick AV, Wheeler JM, Guthrie CR, Liachko NF, Kraemer BC (2013) Dopamine D2 receptor antagonism suppresses tau aggregation and neurotoxicity. Biol Psychiatry 73:464–471. https://doi.org/10.1016/j.biopsych.2012.08.027

    Article  CAS  PubMed  Google Scholar 

  42. Andreassen OA, Jørgensen HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: implications for tardive dyskinesia? Prog Neurobiol 61:525–541

    Article  CAS  Google Scholar 

  43. Keilhoff G, Grecksch G, Bernstein HG, Roskoden T, Becker A (2010) Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci 260:151–162. https://doi.org/10.1007/s00406-009-0033-1

    Article  PubMed  Google Scholar 

  44. Tran PV, Dellva MA, Tollefson GD, Beasley CM Jr, Potvin JH, Kiesler GM (1997) Extrapyramidal symptoms and tolerability of olanzapine versus haloperidol in the acute treatment of schizophrenia. J Clin Psychiatry 58:205–211. https://doi.org/10.4088/JCP.v58n0505

    Article  CAS  PubMed  Google Scholar 

  45. Nishigaki A, Kawano T, Iwata H, Aoyama B, Yamanaka D, Tateiwa H, Shigematsu-Locatelli M, Eguchi S et al (2019) Acute and long-term effects of haloperidol on surgery-induced neuroinflammation and cognitive deficits in aged rats. J Anesth 33:416–425. https://doi.org/10.1007/s00540-019-02646-0

    Article  PubMed  Google Scholar 

  46. Guzen FP, Cavalcanti JRL d P, Cavalcanti DML d P et al (2019) Haloperidol-induced preclinical tardive dyskinesia model in rats. Curr Protoc Neurosci 88:e68. https://doi.org/10.1002/cpns.68

    Article  CAS  PubMed  Google Scholar 

  47. Fachinetto R, Villarinho JG, Wagner C, Pereira RP, Ávila DS, Burger ME, Calixto JB, Rocha JBT et al (2007) Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Prog Neuro-Psychopharmacology Biol Psychiatry 31:1478–1486. https://doi.org/10.1016/j.pnpbp.2007.06.028

    Article  CAS  Google Scholar 

  48. Park SH, Song YS, Moon BS, Lee BC, Park HS, Kim SE (2019) Combination of in vivo [123I]FP-CIT SPECT and microdialysis reveals an antipsychotic drug haloperidol-induced synaptic dopamine availability in the rat midbrain and striatum. Exp Neurobiol 28:602–611. https://doi.org/10.5607/en.2019.28.5.602

    Article  PubMed  PubMed Central  Google Scholar 

  49. Röpke J, Busanello A, Leal CQ, de Moraes Reis E, de Freitas CM, Villarinho JG, Figueira FH, Mello CF et al (2014) Anandamide attenuates haloperidol-induced vacuous chewing movements in rats. Prog Neuro-Psychopharmacology Biol Psychiatry. 54:195–199. https://doi.org/10.1016/j.pnpbp.2014.04.006

    Article  CAS  Google Scholar 

  50. Ceretta APC, de Freitas CM, Schaffer LF, Reinheimer JB, Dotto MM, de Moraes Reis E, Scussel R, Machado-de-Ávila RA et al (2018) Gabapentin reduces haloperidol-induced vacuous chewing movements in mice. Pharmacol Biochem Behav 166:21–26. https://doi.org/10.1016/j.pbb.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  51. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics

  52. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M (2010) Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3- dependent manner in Caenorhabditis elegans. PLoS Genet 6:e1001084. https://doi.org/10.1371/journal.pgen.1001084

  53. Wong JMT, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT (2016) Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A 1446:78–90. https://doi.org/10.1016/j.chroma.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yohn SE, Foster DJ, Covey DP, Moehle MS, Galbraith J, Garcia-Barrantes PM, Cho HP, Bubser M et al (2018) Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0206-2

  55. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  56. Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226. https://doi.org/10.1002/cne.901630207

    Article  CAS  PubMed  Google Scholar 

  57. Maulik M, Mitra S, Bult-Ito A, et al (2017) Behavioral phenotyping and pathological indicators of Parkinson’s disease in C. elegans models. Front Genet

  58. Bornhorst J, Chakraborty S, Meyer S, Lohren H, Brinkhaus SG, Knight AL, Caldwell KA, Karst U, Schwerdtle T, Bowman A, Aschner M (2014) The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxicity and the role of alphasynuclein in C. elegans. Metallomics 6:476-490. https://doi.org/10.1039/c3mt00325f

  59. Oteri A, Mazzaglia G, Pecchioli S, , Molokhia M, Ulrichsen SP, Pedersen L, Poluzzi E, de Ponti F, Garbe E, Schink T, Herings R, Bezemer ID, Sturkenboom MCJM, Trifirò G (2016) Prescribing pattern of antipsychotic drugs during the years 1996–2010: a population-based database study in Europe with a focus on torsadogenic drugs. Br J Clin Pharmacol 82:487-497. https://doi.org/10.1111/bcp.12955

  60. Hálfdánarson Ó, Zoëga H, Aagaard L, Bernardo M, Brandt L, Fusté AC, Furu K, Garuoliené K et al (2017) International trends in antipsychotic use: a study in 16 countries, 2005–2014. Eur Neuropsychopharmacol 27:1064–1076. https://doi.org/10.1016/j.euroneuro.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  61. Hao L, Buttner EA (2014) Methods for studying the mechanisms of action of antipsychotic drugs in Caenorhabditis elegans. J Vis Exp. https://doi.org/10.3791/50864

  62. Wang Q, Timberlake MA, Prall K, Dwivedi Y (2017) The recent progress in animal models of depression. Prog. Neuro-Psychopharmacology Biol Psychiatry

  63. Osuna-Luque J, Rodríguez-Ramos Á, Gámez-del-Estal M del M, Ruiz-Rubio M (2018) Behavioral Mechanisms That Depend on Dopamine and Serotonin in Caenorhabditis elegans Interact With the Antipsychotics Risperidone and Aripiprazole. J Exp Neurosci 12:117906951879862. https://doi.org/10.1177/1179069518798628

  64. Mocko JB, Kern A, Moosmann B, Behl C, Hajieva P (2010) Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson’s disease. Neurobiol Dis 40:120–129. https://doi.org/10.1016/j.nbd.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  65. Smith ED, Kaeberlein TL, Lydum BT, Sager J, Welton KL, Kennedy BK, Kaeberlein M (2008) Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans. BMC Dev Biol 8. https://doi.org/10.1186/1750-2187-8-13

  66. Suo S, Culotti JG, Van Tol HHM (2009) Dopamine suppresses octopamine signaling in C. elegans: possible involvement of dopamine in the regulation of lifespan. Aging (Albany NY). https://doi.org/10.18632/aging.100097

  67. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. https://doi.org/10.1016/S0896-6273(00)81199-X

  68. Gjorgjieva J, Biron D, Haspel G (2014) Neurobiology of caenorhabditis elegans locomotion: where do we stand? Bioscience

  69. White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275:327–348. https://doi.org/10.1098/rstb.1976.0086

  70. Nagashima T, Oami E, Kutsuna N, Ishiura S, Suo S (2016) Dopamine regulates body size in Caenorhabditis elegans. Dev Biol 412:128–138. https://doi.org/10.1016/j.ydbio.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  71. Fox CA, Mansour A, Watson SJ (1994) The effects of haloperidol on dopamine receptor gene expression. Exp Neurol 130:288–303. https://doi.org/10.1006/exnr.1994.1207

    Article  CAS  PubMed  Google Scholar 

  72. Sora I, Fujiwara Y, Tomita H, Ishizu H, Akiyama K, Otsuki S, Yamamura HI (1992) Lack of effect of haloperidol or methamphetamine treatment on the mRNA levels of two dopamine D, receptor isoforms in rat brain. Psychiatry Clin Neurosci 46:967–973. https://doi.org/10.1111/j.1440-1819.1992.tb02868.x

    Article  CAS  Google Scholar 

  73. McCullumsmith RE, Stincic TL, Agrawal SM, Meador-Woodruff JH (2003) Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat. Eur J Pharmacol 477:101–112. https://doi.org/10.1016/j.ejphar.2003.08.018

    Article  CAS  PubMed  Google Scholar 

  74. Mor DE, Daniels MJ, Ischiropoulos H (2019) The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord 34:167–179

    Article  Google Scholar 

Download references

Acknowledgments

We specially acknowledge the collaboration of the colleagues Mahfuzur Miah, Ayodele Jacob Akinyemi, and Tao Ke for technical support.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Aschner M was supported in part by grants from the National Institute of Environmental Health Sciences (NIEHS), R01 ES07331, and R01 ES10563.

Author information

Authors and Affiliations

Authors

Contributions

Krum BN: conceptualization, investigation, writing- original draft preparation, conducted all the experiments with the support of Martins AC, Queirós L, Ferrer B, and Milne GL. Soares FAA: conceptualization, writing - review and editing, visualization. Fachinetto R: supervision, writing - review & editing. Aschner M: conceptualization, supervision, resources, writing - review & editing.

Corresponding author

Correspondence to Michael Aschner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krum, B.N., Martins, A.C., Queirós, L. et al. Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans. Mol Neurobiol 58, 304–316 (2021). https://doi.org/10.1007/s12035-020-02124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02124-9

Keywords

Navigation