Skip to main content

Advertisement

Log in

Depth-Dependent Variables Shape Community Structure and Functionality in the Prince Edward Islands

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Physicochemical variables limit and control the distribution of microbial communities in all environments. In the oceans, this may significantly influence functional processes such the consumption of dissolved organic material and nutrient sequestration. Yet, the relative contributions of physical factors, such as water mass variability and depth, on functional processes are underexplored. We assessed microbial community structure and functionality in the Prince Edward Islands (PEIs) using 16S rRNA gene amplicon analysis and extracellular enzymatic activity assays, respectively. We found that depth and nutrients substantially drive the structural patterns of bacteria and archaea in this region. Shifts from epipelagic to bathypelagic zones were linked to decreases in the activities of several extracellular enzymes. These extracellular enzymatic activities were positively correlated with several phyla including several Alphaproteobacteria (including members of the SAR 11 clade and order Rhodospirillales) and Cyanobacteria. We show that depth-dependent variables may be essential drivers of community structure and functionality in the PEIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    PubMed  PubMed Central  Google Scholar 

  2. Molinos JG, Halpern BS, Schoeman DS, Brown CJ, Kiessling W, Moore PJ, Pandolfi JM, Poloczanska ES, Richardson AJ, Burrows MT (2016) Climate velocity and the future global redistribution of marine biodiversity. Nat Clim Chang 6:83–88

    Google Scholar 

  3. Araújo MB, Rahbek C (2006) How does climate change affect biodiversity? Science 313:1396–1397

    PubMed  Google Scholar 

  4. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Mar Sci 1

  5. Chan NC, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob Chang Biol 19:282–290

    PubMed  Google Scholar 

  6. Sampaio E, Lopes AR, Francisco S, Paula JR, Pimentel M, Maulvault AL, Repolho T, Grilo TF, Pousão-Ferreira P, Marques A (2018) Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius). Sci Total Environ 618:388–398

    CAS  PubMed  Google Scholar 

  7. Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315

    PubMed  Google Scholar 

  8. Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172

    CAS  PubMed  Google Scholar 

  9. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    CAS  PubMed  Google Scholar 

  10. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113:13791–13796

    PubMed  PubMed Central  Google Scholar 

  12. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. https://doi.org/10.1038/nrmicro1341

    Article  CAS  PubMed  Google Scholar 

  13. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146. https://doi.org/10.1038/nrmicro3417

    Article  CAS  PubMed  Google Scholar 

  14. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ (2015) Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347:1257594

    PubMed  Google Scholar 

  15. Smith K, Ruhl H, Bett B, Billett D, Lampitt R, Kaufmann R (2009) Climate, carbon cycling, and deep-ocean ecosystems. Proc Natl Acad Sci 106:19211–19218

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zehr JP, Ward BB (2002) Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl Environ Microbiol 68:1015–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355. https://doi.org/10.1038/nature04159

    Article  CAS  PubMed  Google Scholar 

  18. Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends Ecol Evol 25:233–240

    PubMed  Google Scholar 

  19. Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho LP, Espinoza JCI, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Oceans c T, Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas SG, Bork P, de Vargas C, Iudicone D, Sullivan MB, Raes J, Karsenti E, Bowler C, Gorsky G (2016) Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–470. https://doi.org/10.1038/nature16942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karl DM (2007) Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol 5:759–769. https://doi.org/10.1038/nrmicro1749

    Article  CAS  PubMed  Google Scholar 

  21. Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ (2010) Patterns of diversity in marine phytoplankton. Science 327:1509–1511. https://doi.org/10.1126/science.1184961

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, Baciu M, Lu Y, Murrell JC (2009) Life without light: microbial diversity and evidence of sulfur-and ammonium-based chemolithotrophy in Movile cave. ISME J 3:1093–1104

    CAS  PubMed  Google Scholar 

  23. Sarmento H, Montoya JM, Vázquez-Domínguez E, Vaqué D, Gasol JM (2010) Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Philos Trans R Soc Lond B Biol Sci 365:2137–2149

    PubMed  PubMed Central  Google Scholar 

  24. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci USA 103:12115–12120. https://doi.org/10.1073/pnas.0605127103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamilton AK, Lovejoy C, Galand PE, Ingram RG (2008) Water masses and biogeography of picoeukaryote assemblages in a cold hydrographically complex system. Limnol Oceanogr 53:922–935

    Google Scholar 

  26. Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    CAS  Google Scholar 

  27. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    CAS  PubMed  Google Scholar 

  28. Hoarfrost A, Arnosti C (2017) Heterotrophic extracellular enzymatic activities in the Atlantic Ocean follow patterns across spatial and depth regimes. Front Mar Sci 4. doi: https://doi.org/10.3389/fmars.2017.00200

  29. Morales SE, Biswas A, Herndl GJ, Baltar F (2019) Global structuring of phylogenetic and functional diversity of pelagic fungi by depth and temperature. Front Mar Sci 6. doi: https://doi.org/10.3389/fmars.2019.00131

  30. Tobias-Hünefeldt SP, Wing SR, Espinel-Velasco N, Baltar F, Morales SE (2019) Depth and location influence prokaryotic and eukaryotic microbial community structure in New Zealand fjords. Sci Total Environ 693:133507

    PubMed  Google Scholar 

  31. Hedges JI (1992) Global biogeochemical cycles: progress and problems. Chemistry 39:67–93. https://doi.org/10.1016/0304-4203(92)90096-S

    Article  CAS  Google Scholar 

  32. Kirchman DL (2018) Microbial proteins for organic material degradation in the deep ocean. Proc Natl Acad Sci 115:445–447

    CAS  PubMed  Google Scholar 

  33. Allan LE, William Froneman P, Durgadoo JV, McQuaid CD, Ansorge IJ, Richoux NB (2013) Critical indirect effects of climate change on sub-Antarctic ecosystem functioning. Ecol Evol 3:2994–3004. https://doi.org/10.1002/ece3.678

    Article  Google Scholar 

  34. Belkin I, Gordon A (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res 101:3675–3696

    Google Scholar 

  35. Ansorge I, Lutjeharms J (2002) The hydrography and dynamics of the ocean environment of the Prince Edward Islands (Southern Ocean). J Mar Syst 37:107–127

    Google Scholar 

  36. Reisinger RR, Landman M, Mgibantaka N, Smale MJ, Bester MN, De Bruyn PJN, Pistorius PA (2018) Overlap and temporal variation in the diets of sympatric Antarctic and Subantarctic fur seals (Arctocephalus spp.) at Marion Island, Prince Edward Islands. Polar Res 37:1451142. https://doi.org/10.1080/17518369.2018.1451142

    Article  Google Scholar 

  37. Venkatachalam S, Matcher GF, Lamont T, van den Berg M, Ansorge IJ, Dorrington RA (2019) Influence of oceanographic variability on near-shore microbial communities of the sub-Antarctic Prince Edward Islands. Limnol Oceanogr 64:258–271

    Google Scholar 

  38. Venkatachalam S, Ansorge IJ, Mendes A, Melato LI, Matcher GF, Dorrington RA (2017) A pivotal role for ocean eddies in the distribution of microbial communities across the Antarctic Circumpolar Current. PLoS One 12

  39. Phoma S, Vikram S, Jansson JK, Ansorge IJ, Cowan DA, Van de Peer Y, Makhalanyane TP (2018) Agulhas current properties shape microbial community diversity and potential functionality. Sci Rep 8. https://doi.org/10.1038/s41598-018-28939-0

  40. Ansorge IJ, Froneman PW, Pakhomov EA, Lutjeharms JRE, Perissinotto R, van Ballegooyen R (1999) Physical-biological coupling in the waters surrounding the Prince Edwards (Southern Ocean). Polar Biol 21:135–145

    Google Scholar 

  41. Padilla CC, Ganesh S, Gantt S, Huhman A, Parris DJ, Sarode N, Stewart FJ (2015) Standard filtration practices may significantly distort planktonic microbial diversity estimates. Front Microbiol 6:547. https://doi.org/10.3389/fmicb.2015.00547

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. Wiley-VCH, Weinheim

    Google Scholar 

  43. Hoppe HG (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308

    CAS  Google Scholar 

  44. Hoppe HG (1993) Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Current methods in aquatic microbial ecology. CRC Press, Boca Raton, pp 423–431

    Google Scholar 

  45. Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20:258–274

    PubMed  Google Scholar 

  46. Yamada N, Fukuda H, Ogawa H, Saito H, Suzumura M (2012) Heterotrophic bacterial production and extracellular enzymatic activity in sinking particulate matter in the western North Pacific Ocean. Front Microbiol 3:379. https://doi.org/10.3389/fmicb.2012.00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jacobson Meyers ME, Sylvan JB, Edwards KJ (2014) Extracellular enzyme activity and microbial diversity measured on seafloor exposed basalts from Loihi seamount indicate the importance of basalts to global biogeochemical cycling. Appl Environ Microbiol 80:4854–4864. https://doi.org/10.1128/AEM.01038-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Del Negro P, Celussi M, De Vittor C, Fonda Umani S (2017) Rapid acclimation of microbes to changing substrate pools in epipelagic waters of an Antarctic polynya during austral summer 2003. Polar Biol 41:1–10. https://doi.org/10.1007/s00300-017-2165-5

    Article  Google Scholar 

  49. Baltar F, Aristegui J, Gasol JM, Sintes E, van Aken HM, Herndl GJ (2010) High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat Microb Ecol 58:287–302. https://doi.org/10.3354/ame01377

    Article  Google Scholar 

  50. Sinsabaugh RS (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17:69–74

    CAS  Google Scholar 

  51. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Scally SZ, Makhalanyane TP, Frossard A, Hogg ID, Cowan DA (2016) Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biol Biochem 103:160–170. https://doi.org/10.1016/j.soilbio.2016.08.013

    Article  CAS  Google Scholar 

  53. Parada A, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18:1403–1414

    CAS  PubMed  Google Scholar 

  54. Baltar F, Currie K, Stuck E, Roosa S, Morales SE (2016) Oceanic fronts: transition zones for bacterioplankton community composition. Environ Microbiol Rep 8:132–138

    CAS  PubMed  Google Scholar 

  55. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, TZ DS, Consortium HM, Petrosin JF, Knight R, Birren BW (2011) Chimeric 16s rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. https://doi.org/10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:643–648

    Google Scholar 

  59. Quast C, Pruesse E, Gerken J, Schweer T, Yilmaz P, Peplies J, Glöckner FO (2015) SILVA databases. In: Nelson KE (ed) Encylopedia of Metagenomics. Springer, Boston, pp 626–635

    Google Scholar 

  60. Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45

  61. Oksanen J (2015) Multivariate analysis of ecological communities in R: vegan tutorial

  62. Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer

  63. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8

  64. Makhalanyane TP, Valverde A, Birkeland NK, Cary SC, Tuffin MI, Cowan DA (2013) Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J 7:2080–2090. https://doi.org/10.1038/ismej.2013.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Legendre P, Legendre L (1998) Numerical Ecology. The Netherlands, Amsterdam

    Google Scholar 

  66. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  67. Frank AH, Garcia JA, Herndl GJ, Reinthaler T (2016) Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environ Microbiol. https://doi.org/10.1111/1462-2920.13237

  68. Lutjeharms JRE, Valentine HR (1984) Southern Ocean thermal fronts south of Africa. Deep Sea Res A Oceanogr Res Pap 31:1461–1475

    Google Scholar 

  69. Jiang Z, Chen J, Gao Y, Zhai H, Jin H, Zhou F, Shou L, Yan X, Chen Q (2019) Regulation of spatial changes in phytoplankton community by water column stability and nutrients in the southern Yellow Sea. J Geophys Res Biogeosci 124:2610–2627

    CAS  Google Scholar 

  70. Burkholder J, Mason KM, Glasgow Jr HB (1992) Water-column nitrate enrichment promotes decline of eelgrass Zostera marina: evidence from seasonal mesocosm experiments. Mar Ecol Prog Ser Oldendorf 81:163–178

    CAS  Google Scholar 

  71. Diehl S (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: theory. Ecology 83:386–398

    Google Scholar 

  72. Goes JI, Thoppil PG, do R Gomes H, Fasullo JT (2005) Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308:545–547

    CAS  PubMed  Google Scholar 

  73. Capone DG, Hutchins DA (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat Geosci 6:711–717

    CAS  Google Scholar 

  74. Hutchins DA, Fu F (2017) Microorganisms and ocean global change. Nat Microbiol 2:17058

    CAS  PubMed  Google Scholar 

  75. Moran MA, Durham BP (2019) Sulfur metabolites in the pelagic ocean. Nat Rev Microbiol 17:665–678

    CAS  PubMed  Google Scholar 

  76. Reinthaler T, Álvarez Salgado XA, Álvarez M, van Aken HM, Herndl GJ (2013) Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water. Glob Biogeochem Cycles 27:1151–1162

    CAS  Google Scholar 

  77. Hansman RL, Dittmar T, Herndl GJ (2015) Conservation of dissolved organic matter molecular composition during mixing of the deep water masses of the Northeast Atlantic Ocean. Mar Chem 177:288–297

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lønborg C, Cuevas LA, Reinthaler T, Herndl GJ, Gasol JM, Morán XAG, Bates NR, Álvarez-Salgado XA (2016) Depth dependent relationships between temperature and ocean heterotrophic prokaryotic production. Front Mar Sci 3:90

    Google Scholar 

  79. Rahav E, Silverman J, Raveh O, Hazan O, Rubin-Blum M, Zeri C, Gogou A, Kralj M, Pavlidou A, Kress N (2019) The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity. Deep-Sea Res II Top Stud Oceanogr 164:135–143

    CAS  Google Scholar 

  80. Liu Q, Fang J, Li J, Zhang L, Xie B-B, Chen X-L, Zhang Y-Z (2018) Depth-resolved variations of cultivable bacteria and their extracellular enzymes in the water column of the New Britain trench. Front Microbiol 9:135

    PubMed  PubMed Central  Google Scholar 

  81. Easson CG, Lopez JV (2019) Depth-dependent environmental drivers of microbial plankton community structure in the Northern Gulf of Mexico. Front Microbiol 9 3175

  82. Roether W, Well R (2001) Oxygen consumption in the Eastern Mediterranean. Deep-Sea Res I Oceanogr Res Pap 48:1535–1551

    CAS  Google Scholar 

  83. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci 101:4631–4636

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sinsabaugh RL, Shah JJF (2010) Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecology 91:1455–1465

    PubMed  Google Scholar 

  85. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards R, Brito BR (2006) Community genomics among stratified microbial assemblages in the ocean's interior. Science 311:496–503

    CAS  PubMed  Google Scholar 

  86. De Brabandere L, Canfield DE, Dalsgaard T, Friederich GE, Revsbech NP, Ulloa O, Thamdrup B (2014) Vertical partitioning of nitrogen-loss processes across the oxic-anoxic interface of an oceanic oxygen minimum zone. Environ Microbiol 16:3041–3054

    PubMed  Google Scholar 

  87. Cabello AM, Latasa M, Forn I, Morán XAG, Massana R (2016) Vertical distribution of major photosynthetic picoeukaryotic groups in stratified marine waters. Environ Microbiol 18:1578–1590

    CAS  PubMed  Google Scholar 

  88. Dobal-Amador V, Nieto-Cid M, Guerrero-Feijoo E, Hernando-Morales V, Teira E, Varela MM (2016) Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0–5000 m) off the Galician coast (NW Iberian margin). Deep-Sea Res I Oceanogr Res Pap 114:1–11

    CAS  Google Scholar 

  89. Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM (2018) Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci 115:E6799–E6807

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Djurhuus A, Boersch-Supan PH, Mikalsen S-O, Rogers AD (2017) Microbe biogeography tracks water masses in a dynamic oceanic frontal system. R Soc Open Sci 4:170033

    PubMed  PubMed Central  Google Scholar 

  91. Baltar F, Arístegui J, Gasol JM, Lekunberri I, Herndl GJ (2010) Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME J 4:975–988

    PubMed  Google Scholar 

  92. Wilkins D, Lauro FM, Williams TJ, Demaere MZ, Brown MV, Hoffman JM, Andrews-Pfannkoch C, McQuaid JB, Riddle MJ, Rintoul SR, Cavicchioli R (2013) Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environ Microbiol 15:1318–1333. https://doi.org/10.1111/1462-2920.12035

    Article  CAS  PubMed  Google Scholar 

  93. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:1–9

    Google Scholar 

  94. Huse SM, Ye Y, Zhou Y, Fodor AA (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7

  95. Mariadassou M, Pichon S, Ebert D (2015) Microbial ecosystems are dominated by specialist taxa. Ecol Lett 18:974–982

    PubMed  Google Scholar 

  96. Ruiz-González C, Logares R, Sebastián M, Mestre M, Rodríguez-Martínez R, Galí M, Sala MM, Acinas SG, Duarte CM, Gasol JM (2019) Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol Ecol 28:1930–1945

    PubMed  Google Scholar 

  97. Follows MJ, Dutkiewicz S (2011) Modeling diverse communities of marine microbes. Annu Rev Mar Sci 3:427–451

    Google Scholar 

  98. Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, Fuhrman JA (2015) Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J 9:563–580

    PubMed  Google Scholar 

  99. Cram JA, Parada AE, Fuhrman JA (2016) Dilution reveals how viral lysis and grazing shape microbial communities. Limnol Oceanogr 61:889–905

    Google Scholar 

  100. Zhao D, Shen F, Zeng J, Huang R, Yu Z, Wu QL (2016) Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci Total Environ 573:817–825

    CAS  PubMed  Google Scholar 

  101. Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR (1990) Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol 56:2572–2575

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Partensky F, Garczarek L (2009) Prochlorococcus: advantages and limits of minimalism

  103. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, Yang Y, Orsi WD, Moran DM, Saito MA (2015) Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci 112:1173–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stock CA, Cheung WW, Sarmiento JL, Sunderland EM (2019) Changing Ocean Systems: A Short Synthesis Predicting Future Oceans. Elsevier, pp. 19–34

  105. Davey KE, Kirby RR, Turley CM, Weightman AJ, Fry JC (2001) Depth variation of bacterial extracellular enzyme activity and population diversity in the northeastern North Atlantic Ocean. Deep-Sea Res II Top Stud Oceanogr 48:1003–1017

    CAS  Google Scholar 

  106. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MS, Kuypers MM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci 106:4752–4757

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ (2015) Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J 9:2682–2696

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Arnosti C, Fuchs BM, Amann R, Passow U (2012) Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean. Front Microbiol 3:425

    PubMed  PubMed Central  Google Scholar 

  109. Rogers AD (2000) The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Res II Top Stud Oceanogr 47:119–148

    Google Scholar 

  110. Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40:1042–1049

    CAS  Google Scholar 

  111. Allison SD, Chao Y, Farrara JD, Hatosy S, Martiny A (2012) Fine-scale temporal variation in marine extracellular enzymes of coastal southern California. Front Microbiol 3:301

    PubMed  PubMed Central  Google Scholar 

  112. Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci 3:401–425

    Google Scholar 

  113. Traving SJ, Bentzon-Tilia M, Knudsen-Leerbeck H, Mantikci M, Hansen JL, Stedmon CA, Sørensen H, Markager S, Riemann L (2016) Coupling bacterioplankton populations and environment to community function in coastal temperate waters. Front Microbiol 7 1533

  114. Boden BP (1988) Observations of the island mass effect in the Prince Edward Archipelago. Polar Biol 9:61–68

    Google Scholar 

  115. Perissinotto R, Lutjeharms JRE, van Ballegooyen RC (2000) Biological–physical interactions and pelagic productivity at the Prince Edward Islands, Southern Ocean. J Mar Syst 24:327–341. https://doi.org/10.1016/S0924-7963(99)00093-7

    Article  Google Scholar 

  116. Monticelli LS, La Ferla R, Maimone G (2003) Dynamics of bacterioplankton activities after a summer phytoplankton bloom period in Terra Nova Bay. Antarct Sci 15:85–93

    Google Scholar 

  117. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A (2015) Structure and function of the global ocean microbiome. Science 348:1261359

    PubMed  Google Scholar 

  118. Milici M, Vital M, Tomasch J, Badewien TH, Giebel HA, Plumeier I, Wang H, Pieper DH, Wagner-Döbler I, Simon M (2017) Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr 62:1080–1095

    Google Scholar 

  119. Giovannoni SJ, Thrash JC, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565

    PubMed  PubMed Central  Google Scholar 

  120. Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  121. Li Y, Sun LL, Sun ML, Su HN, Zhang XY, Xie BB, Chen XL, Zhang YZ, Qin QL (2018) Vertical and horizontal biogeographic patterns and major factors affecting bacterial communities in the open South China Sea. Sci Rep 8:8800. https://doi.org/10.1038/s41598-018-27191-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zehr JP, Kudela RM (2011) Nitrogen cycle of the Open Ocean: from genes to ecosystems. Annu Rev Mar Sci 3:197–225. https://doi.org/10.1146/annurev-marine-120709-142819

    Article  Google Scholar 

  123. Nikrad MP, Cottrell MT, Kirchman DL (2014) Uptake of dissolved organic carbon by gammaproteobacterial subgroups in coastal waters of the West Antarctic Peninsula. Appl Environ Microbiol 80:3362–3368

    PubMed  PubMed Central  Google Scholar 

  124. Bergauer K, Fernandez-Guerra A, Garcia JA, Sprenger RR, Stepanauskas R, Pachiadaki MG, Jensen ON, Herndl GJ (2018) Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci 115:E400–E408

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the crew and the captain of the RV SA Agulhas for assistance with sample acquisition. We thank the South African National Antarctic Programme (SANAP 110717) of the National Research Foundation (NRF) and the University of Pretoria for funding. TPM also wishes to acknowledge the Fulbright Visiting Scholar Programme for providing sabbatical funding. BSP acknowledges the National Research Foundation PhD Innovation scholarship for awarding financial aid for research and travel. We thank the Centre for High Performance Computing (Cape Town, South Africa) and the University of Pretoria’s Centre for Bioinformatics and Computation Biology for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thulani Peter Makhalanyane.

Electronic supplementary material

ESM 1

(DOCX 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoma, B.S., Makhalanyane, T.P. Depth-Dependent Variables Shape Community Structure and Functionality in the Prince Edward Islands. Microb Ecol 81, 396–409 (2021). https://doi.org/10.1007/s00248-020-01589-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01589-4

Keywords

Navigation