Skip to main content
Log in

Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial tolerance to organic solvents is critical for efficient production of biofuels. In this study, n-butanol tolerance of Escherichia coli JM109 was improved by overexpressing of genes encoding stress-responsive small RNA-regulator, RNA chaperone, and molecular chaperone. Gene rpoS, coding for sigma S subunit of RNA polymerase, was the most efficient in improving n-butanol tolerance of E. coli. The highest OD600 and the specific growth rate of JM109/pQE80L-rpoS reached 1.692 and 0.144 h–1 respectively at 1.0% (v/v) n-butanol. Double and triple expression of molecular chaperones rpoS, secB, and groS were conducted and optimized. Recombinant strains JM109/pQE80L-secB-rpoS and JM109/pQE80L-groS-secB-rpoS exhibited the highest n-butanol tolerance, with specific growth rates of 0.164 and 0.165 h–1, respectively. Membrane integrity, potentials, and cell morphology analyses demonstrated the high viability of JM109/pQE80L-groS-secB-rpoS. This study provides guidance on employing various molecular chaperones for enhancing the tolerance of E. coli against n-butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mariano, A. P., Tomasella, R. C., Martino, C. D., Maciel, R., Seleghim, M. H. R., & Contiero, J. (2016). Aerobic biodegradation of butanol and gasoline blends. Biomass and Bioenergy, 33, 1175–1181.

    Article  CAS  Google Scholar 

  2. Jeon, J. M., Song, H. S., Lee, D. G., Hong, J. W., Hong, Y. G., Moon, Y. M., Bhatia, S. K., Yoon, J. J., Kim, W., & Yang, Y. H. (2018). Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1. Bioprocess and Biosystems Engineering, 41, 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  3. Chin, W. C., Lin, K. H., Liu, C. C., & Kenji, T. (2017). Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli. BMC Biotechnology, 17, 36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chen, X., Zhou, L., Kangming, T., Kumar, A., & Wang, Z. (2013). Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Biotechnology Advances, 31, 1200–1223.

    Article  CAS  PubMed  Google Scholar 

  5. Cano-Garrido, O., Sanchez-Chardi, A., Pares, S., Giro, I., Tatkiewicz, W. I., Ferrer-Miralles, N., Ratera, I., Natalello, A., Cubarsi, R., Veciana, J., Bach, A., Villaverde, A., Aris, A., & Garcia-Fruitos, E. (2016). Functional protein-based nanomaterial produced in microorganisms recognized as safe: a new platform for biotechnology. Acta Biomaterialia, 43, 230–239.

    Article  CAS  PubMed  Google Scholar 

  6. Cho, C., & Lee, S. Y. (2017). Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Biotechnology and Bioengineering, 114, 374–383.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, S., Wu, Y., Wang, T., Zhang, C., & Xing, X. (2017). Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite production. ACS Synthetic Biology, 6, 2326–2338.

    Article  CAS  PubMed  Google Scholar 

  8. Abil, Z., Ellefson, J. W., Gollihar, J. D., Watkins, E., & Ellington, A. D. (2017). Compartmentalized partnered replication for the directed evolution of genetic parts and circuits. Nature Protocols, 12, 2493–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knoshaug, E. P., & Zhang, M. (2009). Butanol tolerance in a selection of microorganisms. Applied Biochemistry and Biotechnology, 153, 13–20.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, D. C., Tian, D. X., Xue, C., Gao, F., Liu, Y., Li, H., Bao, Y. M., Liang, J. J., Zhao, Z. B., & Qiu, J. S. (2018). Tuned fabrication of the aligned and opened CNT membrane with exceptionally high permeability and selectivity for bioalcohol recovery. Nano Letters, 18, 6150–6156.

    Article  CAS  PubMed  Google Scholar 

  11. Yang, D. C., Cheng, C., Bao, M. T., Chen, L. J., Bao, Y. M., & Xue, C. (2019). The pervaporative membrane with vertically aligned carbon nanotube nanochannel for enhancing butanol recovery. Journal of Membrane Science, 577, 51–59.

    Article  CAS  Google Scholar 

  12. Segura, A., Lázaro, M., Fillet, S., Krell, T., Bernal, P., Muñoz-Rojas, J., & Ramos, J. L. (2012). Solvent tolerance in Gram-negative bacteria. Current Opinion in Biotechnology, 23, 415–421.

    Article  CAS  PubMed  Google Scholar 

  13. Alsaker, K. V., Paredes, C., & Papoutsakis, E. T. (2010). Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnology and Bioengineering, 105, 1131–1147.

    CAS  PubMed  Google Scholar 

  14. Sikkema, J., Bont, J. A. D., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59, 201–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heipieper, H. J., Meinhardt, F., & Segura, A. (2003). The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229, 1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Pinkart, H. C., & White, D. C. (1997). Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. Journal of Bacteriology, 179, 4219–4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramos, J. L., Duque, E., Gallegos, M. T., & Godoy, P. (2002). Mechanism of tolerance in Gram-negative bacteria. Annual Review of Microbiology, 56, 743–768.

    Article  CAS  PubMed  Google Scholar 

  18. Rühl, J., Hein, E. M., Hayen, H., Schmid, A., & Blank, L. M. (2012). The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition related alterations. Microbiology and Biotechnology, 5, 45–58.

    Article  CAS  Google Scholar 

  19. Bernal, P., Segura, A., & Ramos, J. L. (2010). Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environmental Microbiology, 9, 1658–1664.

    Article  CAS  Google Scholar 

  20. Segura, A., Godoy, P., & Dillewijn, P. V. (2005). Proteomic analysis reveals the participation of energy and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. Journal of Bacteriology, 187, 5937–5945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, F., Qian, X. H., Si, H. M., Xu, G. C., Han, R. Z., & Ni, Y. (2015). Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Microbial Cell Factories, 14, 1–11.

    Article  CAS  Google Scholar 

  22. Daniels, C. (2010). Functional analysis of new transporters involved in stress tolerance in Pseudomonas putida DOT-T1E. Environmental Microbiology Reports, 2, 389–395.

    PubMed  Google Scholar 

  23. Nikaido, H., & Takatsuka, Y. (2009). Mechanisms of RND multidrug efflux pumps. Biochimica et Biophysica Acta, 1794, 769–781.

    Article  CAS  PubMed  Google Scholar 

  24. Horinouchi, T., Tamaoka, K., Furusawa, C., Ono, N., Suzuki, S., Hirasawa, T., Yomo, T., & Shimizu, H. (2010). Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genomics, 11, 579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Si, H. M., Zhang, F., Wu, A. N., Han, R. Z., Xu, G. C., & Ni, Y. (2016). DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnology for Biofuels, 9, 114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xu, G. C., Wu, A. N., Xiao, L., Han, R. Z., & Ni, Y. (2019). Enhancing butanol tolerance of Escherichia coli reveals hydrophobic interaction of multi-tasking chaperone SecB. Biotechnology for Biofuels, 12, 164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hu, J., & Wang, Q. (2018). Regulatory sRNAs in Cyanobacteria. Frontiers in Microbiology, 9, 2399.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Durand, S., Braun, F., Helfer, A. C., Romby, P., & Condon, C. (2017). sRNA-mediated activation of gene expression by inhibition of 5′-3′ exonucleolytic mRNA degradation. eLife, 6, e23602.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y. F., Han, K., Chandler, C. E., Tjaden, B., Ernst, R. K., & Lory, S. (2017). Probing the sRNA regulatory landscape of P. aeruginosa: post-transcriptional control of determinants of pathogenicity and antibiotic susceptibility: sRNA regulatory landscape of P. aeruginosa. Molecular Microbiology, 106, 919–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morita, T., & Aiba, H. (2019). Mechanism and physiological significance of autoregulation of the Escherichia coli hfq gene. RNA, 25, 264–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murashko, O. N., & Lin, C. S. (2017). Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. Proceedings of the National Academy of Sciences of the United States of America, 114, 8025–8034.

    Article  CAS  Google Scholar 

  32. Ezemaduka, A. N., Lv, Y., Wang, Y. B., Xu, J. B., & Li, X. J. (2018). Heterologous expression of AgsA enhances, Escherichia coli, tolerance to the combined effect of elevated temperature and Zinc toxicity. Journal of Thermal Biology, 72, 137–142.

    Article  CAS  PubMed  Google Scholar 

  33. Battesti, A., Majdalani, N., & Gottesman, S. (2011). The RpoS mediated general stress response in Escherichia coli. Annual Review of Microbiology, 65, 189–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, R., Cao, Y., Wei, L., Xian, M., & Liu, H. Z. (2017). Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microbial Cell Factories, 16, 227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zingaro, K. A., & Terry, P. E. (2013). GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metabolic Engineering, 15, 196–205.

    Article  CAS  PubMed  Google Scholar 

  36. Zingaro, K. A., & Eleftherios, T. P. (2012). Toward a semisynthetic stress response system to engineer microbial solvent tolerance. Mbio, 3, 429–493.

    Article  CAS  Google Scholar 

  37. Mann, M. S., Dragovic, Z., Schirrmacher, G., & Lutkeeversloh, T. (2012). Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnology Letters, 34, 1643–1649.

    Article  CAS  PubMed  Google Scholar 

  38. Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the sigma (S) (RpoS) subunit of RNA polymerase. Microbiology and Molecular Biology Reviews, 66, 373–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schellhorn, H. E., & Stones, V. L. (1992). Regulation of Katf and Kate in Escherichia coli K-12 by weak acids. Journal of Bacteriology, 174, 4769–4776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trick, H. N., & Finer, J. J. (1997). SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Research, 6, 329–336.

    Article  CAS  Google Scholar 

  41. Darzynkiewicz, Z., Bruno, S., Bino, G. D., Gorczyca, W., Hotz, M. A., Lassota, P., & Traganos, F. (1992). Features of apoptotic cells measured by flow cytometry. Cytometry, 13, 795–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Key Research and Development Program (2018YFA0901700), the National Natural Science Foundation of China (21776112), Natural Science Foundation of Jiangsu Province (BK20171135), the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-07), the Program of Introducing Talents of Discipline to Universities (111-2-06), and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Ni.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 27455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Xiao, L., Wu, A. et al. Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Appl Biochem Biotechnol 193, 257–270 (2021). https://doi.org/10.1007/s12010-020-03417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03417-4

Keywords

Navigation