Skip to main content
Log in

FSH1 encodes lysophospholipase activity in Saccharomyces cerevisiae

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To elucidate the role of FSH1 (family of serine hydrolase) in lipid homeostasis.

Results

Proteins in various species containing alpha/beta hydrolase domain are known to be involved in lipid metabolism. In silico analysis of the FSH1 gene in Saccharomyces cerevisiae revealed the presence of alpha/beta hydrolase domain (ABHD) and a lipase motif (GXSXG), however its function in lipid metabolism remained elusive. The overexpression of FSH1 in WT and fsh1Δ cells showed a significant reduction in the cellular phospholipid levels and an increase in the triacylglycerol levels and lipid droplet (LD) number. Furthermore, the purified recombinant protein Fsh1p was identified as a lysophospholipase that specifically acts on lysophosphatidylserine (LPS) and impacts the lipid homeostasis in S. cerevisiae.

Conclusions

These results depicted that Fsh1p has a role on lipid homeostasis and is a lysophospholipase that hydrolyzes lysophosphatidylserine (LPS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azizi AA, Gelpi E, Yang JW, Rupp B, Godwin AK, Slater C, Slavc I, Lubec G (2006) Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett 241:235–249

    Article  CAS  Google Scholar 

  • Baxter SM, Rosenblum JS, Knutson S, Nelson MR, Montimurro JS, Di Gennaro JA, Speir JA, Burbaum JJ, Fetrow JS (2004) Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteom 3:209–225

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bun JS, Slack MD, Schemenauer DE, Johnson RJ (2020) Comparative analysis of the human serine hydrolase OVCA2 to the model serine hydrolase homolog FSH1 from S. cerevisiae. PLOS One 15:e0230166

    Article  CAS  Google Scholar 

  • De Smet CH, Cox R, Brouwers JF, de Kroon AI (2013) Yeast cells accumulate excess endogenous palmitate in phosphatidylcholine by acyl chain remodeling involving the phospholipase B Plb1p. Biochim Biophys Acta 1831:1167–1176

    Article  Google Scholar 

  • Eisenberg T, Büttner S (2014) Lipids and cell death in yeast. FEMS Yeast Res 14:179–197

    Article  CAS  Google Scholar 

  • Flick JS, Thorner J (1993) Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol 13:5861–5876

    Article  CAS  Google Scholar 

  • Fyrst H, Oskouian B, Kuypers FA, Saba JD (1999) The PLB2 gene of Saccharomyces cerevisiae confers resistance to lysophosphatidylcholine and encodes a phospholipase B/Lysophospholipase. Biochemistry 38:5864–5871

    Article  CAS  Google Scholar 

  • Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R (2008) CGI-58 the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J Biol Chem 283:24525–24533

    Article  CAS  Google Scholar 

  • Gowsalya R, Ravi C, Arul M, Nachiappan V (2019a) FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 112:1775–1784

    Article  CAS  Google Scholar 

  • Gowsalya R, Ravi C, Kannan M, Nachiappan V (2019) FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 19:foz017

    Article  CAS  Google Scholar 

  • Kuwabara Y, Maruyama M, Watanabe Y, Tanaka S, Takakuwa M, Tamai Y (1988) Purification and some properties of membrane-bound phospholipase B from Torulaspora delbrueckii. J Biochem 104:236–241

    Article  CAS  Google Scholar 

  • Lee KS, Patton JL, Fido M, Hines LK, Kohlwein SD, Paltauf F, Henry SA, Levin DE (1994) The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. J Biol Chem 269:19725–19730

    CAS  PubMed  Google Scholar 

  • Merkel O, Fido M, Mayr JA, Prüger H, Raab F, Zandonella G, Kohlwein SD, Paltauf F (1999) Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae. J Biol Chem 274:28121–28127

    Article  CAS  Google Scholar 

  • Merkel O, Oskolkova OV, Raab F, El-Toukhy R, Paltauf F (2005) Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae. Biochem J 387:489–496

    Article  CAS  Google Scholar 

  • Mora G, Scharnewski M, Fulda M (2012) Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS One 7:e49269

    Article  CAS  Google Scholar 

  • Murray JP, McMaster CR (2005) Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p. J Biol Chem 280:8544–8552

    Article  Google Scholar 

  • Murray JP, McMaster CR (2007) Phosphatidylcholine synthesis and its catabolism by yeast neuropathy target esterase 1. Biochim Biophys Acta 1771:331–336

    Article  Google Scholar 

  • Prowse AH, Vanderveer L, Milling SW, Pan ZZ, Dunbrack RL, Xu XX, Godwin AK (2002) OVCA2 is downregulate and degraded during retinoid-induced apoptosis. Int J Cancer 99:185–192

    Article  CAS  Google Scholar 

  • Rajakumari S, Daum G (2010a) Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell 21:501–510

    Article  CAS  Google Scholar 

  • Rajakumari S, Daum G (2010b) Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem 285:15769–15776

    Article  CAS  Google Scholar 

  • Ramya V, Rajasekharan R (2016) ATG15 encodes a phospholipase and is transcriptionally regulated by YAP1 in Saccharomyces cerevisiae. FEBS Lett 590:3155–3167

    Article  Google Scholar 

  • Rose K, Rudge SA, Frohman MA, Morris AJ, Engebrecht J (1995) Phospholipase D signaling is essential for meiosis. Proc Natl Acad Sci 92:12151–12155

    Article  CAS  Google Scholar 

  • Rosenberger S, Connerth M, Zellnig G, Daum G (2009) Phosphatidylethanolamine synthesized by three different pathways is supplied to peroxisomes of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1791:379–387

    Article  CAS  Google Scholar 

  • Saito K, Sugatani J, Okumura T (1991) Phospholipase B from Penicilliumnotatum. Methods Enzymol 197:446–456

    Article  CAS  Google Scholar 

  • Santos AX, Riezman H (2012) Yeast as a model system for studying lipid homeostasis and function. FEBS Lett 586:2858–2867

    Article  CAS  Google Scholar 

  • Sciorra VA, Rudge SA, Prestwich GD, Frohman MA, Engebrecht J, Morris AJ (1999) Identification of a phophoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J 18:5911–5921

    Article  CAS  Google Scholar 

  • Selvaraju K, Rajakumar S, Nachiappan V (2014) Identification of a phospholipase B encoded by the LPL1 gene in Saccharomyces cerevisiae. Biochim Biophys Acta 1842:1383–1392

    Article  Google Scholar 

  • Siakotos AN, Rouser G, Fleischer S (1969) Phospholipid composition of human, bovine and frog myelin isolated on a large from brain and spinal cord. Lipids 4:239–242

    Article  CAS  Google Scholar 

  • Simockova M, Holic R, Tahotna D, Patton-Vogt J, Griac P (2008) Yeast Pgc1p (YPL206c) controls the amount of phosphatidylglycerol via a phospholipase C-type degradation mechanism. Biol Chem 283:17107–17115

    Article  CAS  Google Scholar 

  • Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA (1998) A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 273:16635–16638

    Article  CAS  Google Scholar 

  • Thomas G, Brown AL, Brown JM (2014) In vivo metabolite profiling as a means to identify uncharacterized lipase function: recent success stories within the alpha beta hydrolase domain (ABHD) enzyme family. Biochim Biophys Acta 1841:1097–1101

    Article  CAS  Google Scholar 

  • Vijayakumar A, Vijayaraj P, Vijayakumar AK, Rajasekharan R (2016) The arabidopsis ABHD11 mutant accumulates polar lipids in leaves as a consequence of absent acylhydrolase activity. Plant Physiol 170:180–193

    Article  CAS  Google Scholar 

  • Quevillon-Cheruel S, Leulliot N, Graille M, Hervouet N, Coste F, Bénédetti H, Zelwer C, Janin J, Van Tilbeurgh H (2005) Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Sci 14:1350–1356

    Article  CAS  Google Scholar 

  • Waksman M, Eli Y, Liscovitch M, Gerst JE (1996) Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem 271:2361–2364

    Article  CAS  Google Scholar 

  • Wei Y, Contreras JA, Sheffield P, Osterlund T, Derewenda U, Kneusel RE, Matern U, Holm C, Zygmunt S (1999) Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase. Nat Struct Biol 6:340–345

    Article  CAS  Google Scholar 

  • Yokoo T, Matsui Y, Yagisawa H, Nojima H, Uno I, Tohe A (1993) The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci 90:1804–1808

    Article  CAS  Google Scholar 

  • Zaccheo O, Dinsdale D, Meacock PA, Glynn P (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Biol Chem 279:24024–24033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The infrastructure facilities from DST-FIST, Department of Biochemistry, Life Sciences, and DST-PURSE program of Bharathidasan University Tamil Nadu, India is gratefully acknowledgment. We are thankful to Prof. Ram Rajasekharan CFTRI, India for providing yeast strains.

Supporting information

Supplementary Figure 1—Motif architecture, multiple sequence alignment, and Hydropathy plot of FSH1.

Supplementary Figure 2—Phospholipase activity in yeast Fsh1p.

Supplementary Figure 3—MAG, DAG and TAG lipase activity in purified Fsh1p.

Author information

Authors and Affiliations

Authors

Contributions

Designed the experiments VN and RG. RG, CR performed the experiments. RG, CR analyzed data. VN and RG wrote the manuscript. All the authors concluded the manuscript.

Corresponding author

Correspondence to Vasanthi Nachiappan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (DOCX 1459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, G., Chidambaram, R. & Nachiappan, V. FSH1 encodes lysophospholipase activity in Saccharomyces cerevisiae. Biotechnol Lett 43, 279–286 (2021). https://doi.org/10.1007/s10529-020-03004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-020-03004-x

Keywords

Navigation