Skip to main content
Log in

Evaluation of the Effects of Aging on the Aorta Stiffness in Relation with Mineral and Trace Element Levels: an Optimized Method via Custom-Built Stretcher Device

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aortic stiffness represents the major cause of aging and tightly associated with hypertension, atherosclerosis, cardiovascular diseases, and increased mortality. Mechanical characteristics of the aorta play a vital role in the blood flow, circulation, systolic pressure, and aortic stiffness; however, the correlation of trace element and mineral levels with aortic stiffness has not been studied before. Balance in the trace elements and minerals is vital for the biological functions; however, natural aging may alter this balance. Thus, after measuring aortic stiffness of aged and young rat aortas by a custom-built stretcher device, trace element and mineral levels were evaluated via ICP-MS. Also, biomarkers of aging including blood pressure, arterial pressure glucose, insulin levels, and histochemical parameters were investigated as well. Aortic stiffness, blood glucose, plasma insulin, systolic, diastolic, and mean arterial pressure significantly increased by aging in the aorta of aged rats compared with the young ones. Also, Fe, Al, Co, Ni, Zn, Sr, Na, Mg, and K levels increased in the aged aorta samples compared with the young aorta samples of rats. Increased levels of the indicated elements may be correlated with the development and progression of aortic stiffness and vascular complications. Thus, possible mechanisms correlating aortic stiffness with the imbalance in the trace element and mineral levels should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37(5):1236–1241

    Article  CAS  PubMed  Google Scholar 

  2. Nichols WW (2005) Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18(1 Pt 2):3S–10S

    Article  PubMed  Google Scholar 

  3. Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD (2010) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kals J, Kampus P, Kals M, Pulges A, Teesalu R, Zilmer K, Kullisaar T, Salum T, Eha J, Zilmer M (2008) Inflammation and oxidative stress are associated differently with endothelial function and arterial stiffness in healthy subjects and in patients with atherosclerosis. Scand J Clin Lab Invest 68(7):594–601

    Article  CAS  PubMed  Google Scholar 

  5. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308(9):875–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moon I, Jin KN, Kim HL, Suh HJ, Lim WH, Seo JB, Kim SH, Zo JH, Kim MA (2019) Association of arterial stiffness with aortic calcification and tortuosity. Medicine (Baltimore) 98(33):e16802

    Article  Google Scholar 

  7. O’Rourke MF, Nichols WW (2005) Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45(4):652–658

    Article  PubMed  Google Scholar 

  8. Steppan J, Sikka G, Jandu S, Barodka V, Halushka MK, Flavahan NA, Belkin AM, Nyhan D, Butlin M, Avolio A, Berkowitz DE, Santhanam L (2014) Exercise, vascular stiffness, and tissue transglutaminase. J Am Heart Assoc 3(2):e000599

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lindesay G, Bézie Y, Ragonnet C, Duchatelle V, Dharmasena C, Villeneuve N, Vayssettes-Courchay C (2018) Differential stiffening between the abdominal and thoracic aorta: effect of salt loading in stroke-prone hypertensive rats. J Vasc Res 55(3):144–158

    Article  PubMed  Google Scholar 

  10. Silver FH, Christiansen DL, Buntin CM (1989) Mechanical properties of the aorta: a review. Crit Rev Biomed Eng 17(4):323–358

    CAS  PubMed  Google Scholar 

  11. Stergiopulos N, Westerhof N (1999) Role of total arterial compliance and peripheral resistance in the determination of systolic and diastolic aortic pressure. Pathol Biol (Paris) 47(6):641–647

    CAS  Google Scholar 

  12. Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89(3):957–989

    Article  CAS  PubMed  Google Scholar 

  13. Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Connect Tissue Res 14(3-4):283–292

    Google Scholar 

  14. Matsuda M, Nosaka T, Sato M, Ohshima N (1993) Effects of physical exercise on the elasticity and elastic components of the rat aorta. European journal of applied physiology and occupational physiology. Eur J Appl Physiol Occup Physiol 66(2):122–126

    Article  CAS  PubMed  Google Scholar 

  15. Brüel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127(2):155–165

    Article  PubMed  Google Scholar 

  16. Spina M, Garbisa S, Hinnie J, Hunter JC, Serafini-Fracassini A (1983) Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta. Arteriosclerosis 3(1):64–76

    Article  CAS  PubMed  Google Scholar 

  17. Zulliger MA, Stergiopulos N (2007) Structural strain energy function applied to the ageing of the human aorta. J Biomech 40(14):3061–3069

    Article  PubMed  Google Scholar 

  18. Hager A, Kaemmerer H, Rapp-Bernhardt U, Blucher S, Rapp K, Bernhardt TM, Galanski M, Hess J (2002) Diameters of the thoracic aorta throughout life as measured with helical computed tomography. J Thorac Cardiovasc Surg 123(6):1060–1066

    Article  PubMed  Google Scholar 

  19. Webb RC, Inscho EW (2005) Age-related changes in the cardiovascular system. Hypertension in the elderly. Clinical Hypertension and Vascular Diseases. Humana Press pp 11-21

  20. Karavidas A, Lazaros G, Tsiachris D, Pyrgakis V (2010) Aging and the cardiovascular system. Hell J Cardiol 51(5):421–427

    Google Scholar 

  21. Redheuil A, Yu WC, Mousseaux E, Harouni AA, Kachenoura N, Wu CO, Bluemke D, Lima JA (2011) Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol 58(12):1262–1270

    Article  PubMed  PubMed Central  Google Scholar 

  22. Craiem D, Casciaro ME, Graf S, Chironi G, Simon A, Armentano RL (2012) Effects of aging on thoracic aorta size and shape: a non-contrast CT study. Conf Proc IEEE Eng Med Biol Soc 2012:4986–4989

    Google Scholar 

  23. Vivoli G, Bergomi M, Rovesti S, Pinotti M, Caselgrandi E (1995) Zinc, copper, and zinc- or copper-dependent enzymes in human hypertension. Biol Trace Elem Res 49(2-3):97–106

    Article  CAS  PubMed  Google Scholar 

  24. Corti MC, Guralnik JM, Salive ME, Ferrucci L, Pahor M, Wallace RB, Hennekens CH (1997) Serum iron level, coronary artery disease, and all-cause mortality in older men and women. Am J Cardiol 79(2):120–127

    Article  CAS  PubMed  Google Scholar 

  25. Liao F, Folsom AR, Brancati FL (1998) Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 136(3):480–490

    Article  CAS  PubMed  Google Scholar 

  26. Safar ME, Thuilliez C, Richard V, Benetos A (2000) Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc Res 46(2):269–276

    Article  CAS  PubMed  Google Scholar 

  27. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J.Clin.Investig 115(3):500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tubek S (2006) Role of trace elements in primary arterial hypertension: is mineral water style or prophylaxis? Biol Trace Elem Res 114(1-3):1–5

    Article  CAS  PubMed  Google Scholar 

  29. Aydin O, Aksoy B, Akalin OB, Bayraktar H, Alaca BE (2016) Time-resolved local strain tracking microscopy for cell mechanics. Rev Sci Instrum 87(2):023905

    Article  CAS  PubMed  Google Scholar 

  30. Olgar Y, Billur D, Tuncay E, Turan B (2020) MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol 136:110961

    Article  CAS  PubMed  Google Scholar 

  31. Krege JH, Hodgin JB, Hagaman JR, Smithies O (1995) A noninvasive computerized tail-cuff system for measuring blood-pressure in mice. Hypertension 25(5):1111–1115

    Article  CAS  PubMed  Google Scholar 

  32. Aydemir D, Karabulut G, Şimşek G, Gok M, Barlas N, Ulusu NN (2018) Impact of the di(2-ethylhexyl) phthalate administration on trace element and mineral levels in relation of kidney and liver damage in rats. Biol Trace Elem Res 186(2):474–488

    Article  CAS  PubMed  Google Scholar 

  33. Aydemir D, Karabulut G, Gok M, Barlas N, Ulusu NN (2019) Data the DEHP induced changes on the trace element and mineral levels in the brain and testis tissues of rats. Data Brief 26:104526

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aydemir D, Sarayloo E, Ulusu NN (2020) Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. J Med Biochem 39(3):267–275

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Blacher J, Asmar R, Djane S, London GM, Safar ME (1999) Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 33(5):1111–1117

    Article  CAS  PubMed  Google Scholar 

  36. Benetos A, Waeber B, Izzo J, Mitchell G, Resnick L, Asmar R, Safar M (2002) Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens 15(12):1101–1108

    Article  PubMed  Google Scholar 

  37. Kalyani RR, Egan JM (2013) Diabetes and altered glucose metabolism with aging. Endocrinol Metab Clin N Am 42(2):333–347

    Article  CAS  Google Scholar 

  38. Redheuil A, Wu CO, Kachenoura N, Ohyama Y, Yan RT, Bertoni AG, Hundley GW, Duprez DA, Jacobs DR Jr, Daniels LB, Darwin C, Sibley C, Bluemke DA, Lima JAC (2014) Proximal aortic distensibility is an independent predictor of all-cause mortality and incident CV events: the MESA study. J Am Coll Cardiol 64(24):2619–2629

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bonarjee VVS (2018) Arterial stiffness: a prognostic marker in coronary heart disease. Available methods and clinical application. Front Cardiovasc Med 5:64

    Article  PubMed  PubMed Central  Google Scholar 

  40. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, Horan MJ, Labarthe D (1995) Prevalence of hypertension in the US adult population: results from the third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 25(3):305–313

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen WB, Vestbo J, Jensen GB (1995) Isolated systolic hypertension as a major risk factor for stroke and myocardial infarction and an unex-ploited source of cardiovascular prevention: a prospective popula-tion-based study. J Hum Hypertens 9(3):175–180

    CAS  PubMed  Google Scholar 

  42. Amar J, Ruidavets JB, Chamontin B, Drouet L, Ferrieres J (2001) Arterial stiffness and cardiovascular risk factors in a population-based study. J Hypertens 19(3):381–387

    Article  CAS  PubMed  Google Scholar 

  43. Scuteri A, Najjar SS, Muller DC, Andres R, Hougaku H, Metter EJ, Lakata EG (2004) Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness. J Am Coll Cardiol 43(8):1388–1395

    Article  PubMed  Google Scholar 

  44. Fukuhara M, Matsumura K, Ansai T, Takata Y, Sonoki K, Akifusa S, Wakisaka M, Hamasaki T, Fujisawa K, Yoshida A, Fujii K, Iida M, Takehara T (2006) Prediction of cognitive function by arterial stiffness in the very elderly. Circ J 70(6):756–761

    Article  PubMed  Google Scholar 

  45. Laurent S, Boutouyrie P (2007) Recent advances in arterial stiffness and wave in human hypertension. Hypertension 49(6):1202–1206

    Article  CAS  PubMed  Google Scholar 

  46. Lee HY, Oh BH (2010) Aging and arterial stiffness. Circ J 74(11):2257–2262

    Article  PubMed  Google Scholar 

  47. Pappas LE, Nagy TR (2019) The translation of age-related body composition findings from rodents to humans. Eur J Clin Nutr 73(2):172–178. https://doi.org/10.1038/s41430-018-0324-6

    Article  PubMed  Google Scholar 

  48. Tuna BG, Ozturk N, Comelekoglu U, Yilmaz BC (2011) Effects of organophosphate insecticides on mechanical properties of rat aorta. Physiol Res 60(1):39–46

    Article  Google Scholar 

  49. Hayashia K, Hirayamac E (2017) Age-related changes of wall composition and collagen cross-linking in the rat carotid artery – in relation with arterial mechanics. J Mech Behav Biomed Mater 65:881–889

    Article  CAS  Google Scholar 

  50. Ames BN (2006) Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A 103:17589–17594. https://doi.org/10.1073/pnas.0608757103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Arnaud J, Arnault N, Roussel AM, Bertrais S, Ruffieux D, Galan P, Favier A, Hercberg S (2007) Relationships between selenium, lipids, iron status and hormonal therapy in women of the SU.VI.M.AX cohort. J Trace Elem Med Biol 21(Suppl 1):66–69. https://doi.org/10.1016/j.jtemb.2007.09.025

    Article  CAS  PubMed  Google Scholar 

  52. Aydemir D, Hashemkhani M, Acar HY, Ulusu NN (2020) Evaluation of the biocompatibility of the GSH-coated Ag2S quantum dots in vitro: a perfect example for the non-toxic optical probes. Mol Biol Rep 47(6):4117–4129. https://doi.org/10.1007/s11033-020-05522-3

    Article  CAS  PubMed  Google Scholar 

  53. Vázquez M, Calatayud M, Jadán Piedra C, Chiocchetti GM, Vélez D, Devesa V (2015) Toxic trace elements at gastrointestinal level. Food Chem Toxicol 86:163–175

    Article  PubMed  CAS  Google Scholar 

  54. Rassam SS, Counsell DJ (2005) Perioperative electrolyte and fluid balance. Anaesth Crit Care Pa 5(5):157–160

    Google Scholar 

  55. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS (1986) Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8(6 Pt 2):II127–II134

    CAS  PubMed  Google Scholar 

  56. Weinberger MH (1996) Salt sensitivity of blood pressure in humans. Hypertension. 27(3):481–490

    Article  CAS  PubMed  Google Scholar 

  57. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M (2001) Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension 37(2 Pt 2):429–432

    Article  CAS  PubMed  Google Scholar 

  58. Larrousse M, Bragulat E, Segarra M, Sierra C, Coca A, de La Sierra A (2006) Increased levels of atherosclerosis markers in salt-sensitive hypertension. Am J Hypertens 19(1):87–93

    Article  CAS  PubMed  Google Scholar 

  59. Oberleithner H, Riethmüller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 104(41):16281–16286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paar M, Pavenstädt H, Kusche-Vihrog K, Drüppel V, Oberleithner H, Kliche K (2014) Endothelial sodium channels trigger endothelial salt sensitivity with aging. Hypertension 64(2):391–396

    Article  CAS  PubMed  Google Scholar 

  61. Young DB, Lin H, McCabe RD (1995) Potassium’s cardiovascular protective mechanisms. Am J Phys 268(4 Pt 2):R825–R837

    CAS  Google Scholar 

  62. Ma G, Mason DP, Young DB (2000) Inhibition of vascular smooth muscle cell migration by elevation of extracellular potassium concentration. Hypertension 35(4):948–951

    Article  CAS  PubMed  Google Scholar 

  63. Ma G, Young DB, Clower BR, Anderson PG, Lin H, Abide AM (2000) High potassium intake inhibits neointima formation in the rat carotid artery balloon injury model. Am J Hypertens 13(9):1014–1020

    Article  CAS  PubMed  Google Scholar 

  64. Sun Y, Byon CH, Yang Y, Bradley WE, Dell’Italia LJ, Sanders PW, Agarwal A, Wu H, Chen Y (2017) Dietary potassium regulates vascular calcification and arterial stiffness. JCI Insight 2(19):e94920

    Article  PubMed Central  Google Scholar 

  65. Bartlett DE, Miller RB, Thiesfeldt S, Lakhani HV, Shapiro JI, Sodhi K (2018) The role of Na/K-ATPase signaling in oxidative stress related to aging: implications in obesity and cardiovascular disease. Int J Mol Sci 19(7):2139. https://doi.org/10.3390/ijms19072139

  66. Turan B, Acan NL, Ulusu NN, Tezcan EF (2001) A comparative study on effect of dietary selenium and vitamin E on some antioxidant enzyme activities of liver and brain tissues. Biol Trace Elem Res 81(2):141–152

    Article  CAS  PubMed  Google Scholar 

  67. Orbe J, Fernandez L, Rodriguez JA et al (2003) Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclerosis. 170:269–276

    Article  CAS  PubMed  Google Scholar 

  68. Knox JB, Sukhova GK, Whittemore AD, Libby P (1997) Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases. Circulation. 95:205–212

    Article  CAS  PubMed  Google Scholar 

  69. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu P, Sun M, Sader S (2006) Matrix metalloproteinases in cardiovascular disease. Can J Cardiol 22 Suppl B(Suppl B):25B–30B. https://doi.org/10.1016/s0828-282x(06)70983-7

    Article  PubMed  Google Scholar 

  71. Valenti L, Maloberti A, Signorini S, Milano M, Cesana F, Cappellini F, Dongiovanni P, Porzio M, Soriano F, Brambilla M, Cesana G, Brambilla P, Giannattasio C, Fargion S (2015) Iron stores, hepcidin, and aortic stiffness in individuals with hypertension. Iron stores, hepcidin, and aortic stiffness in individuals with hypertension. PLoS One 10(8):e0134635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ulusu N, Acan N, Turan B, Tezcan E (2003) Inhibition of glutathione reductase by cadmium ion in some rabbit tissues and the protective role of dietary selenium. Biol Trace Elem Res 91(2):151–156

    Article  CAS  PubMed  Google Scholar 

  73. Tandogan B, Ulusu NN (2007) The inhibition kinetics of yeast glutathione reductase by some metal ions. J Enzyme Inhib Med Chem 22(4):489–495

    Article  CAS  PubMed  Google Scholar 

  74. Hill JM, Percy ME, Lukiw WJ (2019) Early insight into the potential contribution of aluminum to neurodegeneration - a tribute to the research work of Robert D. Terry, Igor Klatzo, Henryk M. Wisniewski and Donald R.C. Mclachlan. J Inorg Biochem 203:110860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the use of the services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.

Funding

This study was funded by the Presidency of Turkey, Presidency of Strategy, and Budget.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuriye Nuray Ulusu.

Ethics declarations

All experimental procedures were performed according to the European Community guidelines on the care and use of laboratory animals as described by Olgar et al. [30]. Our study has been approved by the Ankara University with a reference number of 2016-18-165.

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydemir, D., Salman, N., Karimzadehkhouei, M. et al. Evaluation of the Effects of Aging on the Aorta Stiffness in Relation with Mineral and Trace Element Levels: an Optimized Method via Custom-Built Stretcher Device. Biol Trace Elem Res 199, 2644–2652 (2021). https://doi.org/10.1007/s12011-020-02380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02380-9

Keywords

Navigation