Skip to main content
Log in

S100A9 Upregulation Contributes to Learning and Memory Impairments by Promoting Microglia M1 Polarization in Sepsis Survivor Mice

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis-associated encephalopathy (SAE) is a clinical syndrome of brain dysfunction secondary to sepsis, which is characterized by long-term neurocognitive deficits such as memory, attention, and executive dysfunction. However, the mechanisms underlying SAE remain unclear. By using transcriptome sequencing approach, we showed that hippocampal S100A9 was significantly increased in sepsis induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. Thus, we used S100A9 inhibitor Paquinimod to study the role of S100A9 in cognitive impairments in CLP-induced and LPS-induced mice models of SAE. Sepsis survivor mice underwent behavioral tests or the hippocampal tissues subjected to Western blotting, real-time quantitative PCR, and immunohistochemistry. Our results showed that CLP-induced and LPS-induced memory impairments were accompanied with increased expressions of hippocampal microglia Iba1 and CD86 (M1 markers), but reduced expression of Arg1 (M2 marker). Notably, S100A9 inhibition significantly improved the survival rate and learning and memory impairments in sepsis survivors, with a shift from M1 to M2 phenotype. Taken together, our study suggests that S100A9 upregulation might contribute to learning and memory impairments by promoting microglia M1 polarization in sepsis survivors, whereas S100A9 inhibition might provide a potential therapeutic target for SAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.

    Article  CAS  PubMed  Google Scholar 

  2. Iwashyna, T.J., E.W. Ely, D.M. Smith, and K.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304: 1787–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Widmann, Catherine N., and Michael T. Heneka. 2014. Long-term cerebral consequences of sepsis. The Lancet Neurology 13: 630–636.

    Article  PubMed  Google Scholar 

  4. Helbing, D.L., L. Bohm, and O.W. Witte. 2018. Sepsis-associated encephalopathy. CMAJ 190: E1083.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ji, M.H., L.L. Qiu, H. Tang, L.S. Ju, X.R. Sun, H. Zhang, M. Jia, Z.Y. Zuo, J.C. Shen, and J.J. Yang. 2015. Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. Journal of Neuroinflammation 12: 182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Michels, M., A.S. Vieira, F. Vuolo, H.G. Zapelini, B. Mendonca, F. Mina, D. Dominguini, et al. 2015. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain, Behavior, and Immunity 43: 54–59.

    Article  CAS  PubMed  Google Scholar 

  7. Nacken, W., J. Roth, C. Sorg, and C. Kerkhoff. 2003. S100A9/S100A8: myeloid representatives of the S100 protein family as prominent players in innate immunity. Microscopy Research and Technique 60: 569–580.

    Article  CAS  PubMed  Google Scholar 

  8. Vogl, T., A.L. Gharibyan, and L.A. Morozova-Roche. 2012. Pro-inflammatory S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes. International Journal of Molecular Sciences 13: 2893–2917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogl, T., M. Eisenblatter, T. Voller, S. Zenker, S. Hermann, P. van Lent, A. Faust, et al. 2014. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity. Nature Communications 5: 4593.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, B., A.L. Miller, M. Rebelatto, Y. Brewah, D.C. Rowe, L. Clarke, M. Czapiga, K. Rosenthal, T. Imamichi, Y. Chen, C.S. Chang, P.S. Chowdhury, B. Naiman, Y. Wang, D. Yang, A.A. Humbles, R. Herbst, and G.P. Sims. 2015. S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns (DAMP) receptors in vitro and in vivo. PLoS One 10: e0115828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang, S., R. Song, Z. Wang, Z. Jing, S. Wang, and J. Ma. 2018. S100A8/A9 in inflammation. Frontiers in Immunology 9: 1298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Denstaedt, S.J., J.L. Spencer-Segal, M.W. Newstead, K. Laborc, A.P. Zhao, A. Hjelmaas, X. Zeng, H. Akil, T.J. Standiford, and B.H. Singer. 2018. S100A8/A9 drives neuroinflammatory priming and protects against anxiety-like behavior after sepsis. Journal of Immunology 200: 3188–3200.

    Article  CAS  Google Scholar 

  13. Engel, S., H. Schluesener, M. Mittelbronn, K. Seid, D. Adjodah, H.D. Wehner, and R. Meyermann. 2000. Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathologica 100: 313–322.

    Article  CAS  PubMed  Google Scholar 

  14. Horvath, I., I.A. Iashchishyn, R.A. Moskalenko, C. Wang, Warmlander Skts, C. Wallin, A. Graslund, G.G. Kovacs, and L.A. Morozova-Roche. 2018. Co-aggregation of pro-inflammatory S100A9 with alpha-synuclein in Parkinson's disease: ex vivo and in vitro studies. Journal of Neuroinflammation 15: 172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Shepherd, C.E., J. Goyette, V. Utter, F. Rahimi, Z. Yang, C.L. Geczy, and G.M. Halliday. 2006. Inflammatory S100A9 and S100A12 proteins in Alzheimer's disease. Neurobiology of Aging 27: 1554–1563.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, C., A.G. Klechikov, A.L. Gharibyan, S.K. Wärmländer, J. Jarvet, L. Zhao, X. Jia, et al. 2014. The role of pro-inflammatory S100A9 in Alzheimer’s disease amyloid-neuroinflammatory cascade. Acta Neuropathologica 127: 507–522.

    Article  CAS  PubMed  Google Scholar 

  17. Dubois, C., D. Marce, V. Faivre, A.C. Lukaszewicz, C. Junot, F. Fenaille, S. Simon, F. Becher, N. Morel, and D. Payen. 2019. High plasma level of S100A8/S100A9 and S100A12 at admission indicates a higher risk of death in septic shock patients. Scientific Reports 9: 15660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wu, M., L. Xu, Y. Wang, N. Zhou, F. Zhen, Y. Zhang, X. Qu, H. Fan, S. Liu, Y. Chen, and R. Yao. 2018. S100A8/A9 induces microglia activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-kappaB signaling pathway. Brain Research Bulletin 143: 234–245.

    Article  CAS  PubMed  Google Scholar 

  19. Kummer, M.P., T. Vogl, D. Axt, A. Griep, A. Vieira-Saecker, F. Jessen, E. Gelpi, J. Roth, and M.T. Heneka. 2012. Mrp14 deficiency ameliorates amyloid beta burden by increasing microglial phagocytosis and modulation of amyloid precursor protein processing. The Journal of Neuroscience 32: 17824–17829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gruden, M.A., T.V. Davydova, V.S. Kudrin, C. Wang, V.B. Narkevich, L.A. Morozova-Roche, and R.D.E. Sewell. 2018. S100A9 protein aggregates boost hippocampal glutamate modifying monoaminergic neurochemistry: A glutamate antibody sensitive outcome on Alzheimer-like memory decline. ACS Chemical Neuroscience 9: 568–577.

    Article  CAS  PubMed  Google Scholar 

  21. Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, W., W. Guo, Y. Zhu, S. Peng, W. Zheng, C. Zhang, F. Shao, Y. Zhu, N. Hang, L. Kong, X. Meng, Q. Xu, and Y. Sun. 2018. Targeting peroxiredoxin 1 by a curcumin analogue, AI-44, inhibits NLRP3 inflammasome activation and attenuates lipopolysaccharide-induced sepsis in mice. Journal of Immunology 201: 2403–2413.

    Article  CAS  Google Scholar 

  23. Leger, M., A. Quiedeville, V. Bouet, B. Haelewyn, M. Boulouard, P. Schumann-Bard, and T. Freret. 2013. Object recognition test in mice. Nature Protocols 8: 2531–2537.

    Article  CAS  PubMed  Google Scholar 

  24. Li, R., Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang. 2009. SNP detection for massively parallel whole-genome resequencing. Genome Research 19: 1124–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, J., C.G. Mullighan, J. Easton, S. Roberts, S.L. Heatley, J. Ma, M.C. Rusch, K. Chen, C.C. Harris, L. Ding, L. Holmfeldt, D. Payne-Turner, X. Fan, L. Wei, D. Zhao, J.C. Obenauer, C. Naeve, E.R. Mardis, R.K. Wilson, J.R. Downing, and J. Zhang. 2011. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nature Methods 8: 652–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and Subgroup Genome Project Data Processing. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chiang, D.Y., G. Getz, D.B. Jaffe, M.J. O'Kelly, X. Zhao, S.L. Carter, C. Russ, C. Nusbaum, M. Meyerson, and E.S. Lander. 2009. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nature Methods 6: 99–103.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, H., and K. Wang. 2015. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nature Protocols 10: 1556–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mina, F., C.M. Comim, D. Dominguini, O.J. Cassol Jr., D.M. Dall Igna, G.K. Ferreira, M.C. Silva, et al. 2014. Il1-beta involvement in cognitive impairment after sepsis. Molecular Neurobiology 49: 1069–1076.

    Article  CAS  PubMed  Google Scholar 

  30. Bi, W., X. Lan, J. Zhang, S. Xiao, X. Cheng, H. Wang, D. Lu, and L. Zhu. 2019. USP8 ameliorates cognitive and motor impairments via microglial inhibition in a mouse model of sepsis-associated encephalopathy. Brain Research 1719: 40–48.

    Article  CAS  PubMed  Google Scholar 

  31. Xu, X.E., L. Liu, Y.C. Wang, C.T. Wang, Q. Zheng, Q.X. Liu, Z.F. Li, X.J. Bai, and X.H. Liu. 2019. Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis. Brain, Behavior, and Immunity 80: 859–870.

    Article  CAS  PubMed  Google Scholar 

  32. Buras, J.A., B. Holzmann, and M. Sitkovsky. 2005. Animal models of sepsis: setting the stage. Nature Reviews. Drug Discovery 4: 854–865.

    Article  CAS  PubMed  Google Scholar 

  33. Ometto, F., L. Friso, D. Astorri, C. Botsios, B. Raffeiner, L. Punzi, and A. Doria. 2017. Calprotectin in rheumatic diseases. Experimental Biology and Medicine (Maywood, N.J.) 242: 859–873.

    Article  CAS  Google Scholar 

  34. Chiu, C.W., H.M. Chen, T.T. Wu, Y.C. Shih, K.K. Huang, Y.F. Tsai, Y.L. Hsu, and S.F. Chen. 2015. Differential proteomics of monosodium urate crystals-induced inflammatory response in dissected murine air pouch membranes by iTRAQ technology. Proteomics 15: 3338–3348.

    Article  CAS  PubMed  Google Scholar 

  35. Cesaro, A., N. Anceriz, A. Plante, N. Page, M.R. Tardif, and P.A. Tessier. 2012. An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS One 7: e45478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu, Q., J. Wu, X.Y. Zhou, M.H. Ji, Q.H. Mao, Q. Li, M.M. Zong, Z.Q. Zhou, and J.J. Yang. 2019. NLRP3/caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation 42: 306–318.

    Article  CAS  PubMed  Google Scholar 

  37. Imamura, Y., H. Wang, N. Matsumoto, T. Muroya, J. Shimazaki, H. Ogura, and T. Shimazu. 2011. Interleukin-1beta causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187: 63–69.

    Article  CAS  PubMed  Google Scholar 

  38. Lorey, M.B., K. Rossi, K.K. Eklund, T.A. Nyman, and S. Matikainen. 2017. Global characterization of protein secretion from human macrophages following non-canonical caspase-4_5 inflammasome activation. Molecular & Cellular Proteomics 16: S187–S199.

    Article  Google Scholar 

  39. Singer, B.H., M.W. Newstead, X. Zeng, C.L. Cooke, R.C. Thompson, K. Singer, R. Ghantasala, J.M. Parent, G.G. Murphy, T.J. Iwashyna, and T.J. Standiford. 2016. Cecal ligation and puncture results in long-term central nervous system myeloid inflammation. PLoS One 11: e0149136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hirbec, H.E., H.N. Noristani, and F.E. Perrin. 2017. Microglia responses in acute and chronic neurological diseases: what microglia-specific transcriptomic studies taught (and did not teach) us. Frontiers in Aging Neuroscience 9: 227.

    Article  CAS  Google Scholar 

  41. Bah, I., A. Kumbhare, L. Nguyen, C.E. McCall, and M. El Gazzar. 2018. IL-10 induces an immune repressor pathway in sepsis by promoting S100A9 nuclear localization and MDSC development. Cellular Immunology 332: 32–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Szollosi, D., N. Hegedus, D.S. Veres, I. Futo, I. Horvath, N. Kovacs, B. Martinecz, et al. 2018. Evaluation of brain nuclear medicine imaging tracers in a murine model of sepsis-associated encephalopathy. Molecular Imaging and Biology 20: 952–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lemstra, A.W., J.C. Groen in’t Woud, J.J. Hoozemans, E.S. van Haastert, A.J. Rozemuller, P. Eikelenboom, and W.A. van Gool. 2007. Microglia activation in sepsis: a case-control study. Journal of Neuroinflammation 4: 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pan, S., Y. Wu, L. Pei, S. Li, L. Song, H. Xia, Y. Wang, Y. Yu, X. Yang, H. Shu, J. Zhang, S. Yuan, and Y. Shang. 2018. BML-111 reduces neuroinflammation and cognitive impairment in mice with sepsis via the SIRT1/NF-kappaB signaling pathway. Frontiers in Cellular Neuroscience 12: 267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhang, S., X. Wang, S. Ai, W. Ouyang, Y. Le, and J. Tong. 2017. Sepsis-induced selective loss of NMDA receptors modulates hippocampal neuropathology in surviving septic mice. PLoS One 12: e0188273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moraes, C.A., G. Santos, T.C. de Sampaio e Spohr, J.C. D’Avila, F.R. Lima, C.F. Benjamim, F.A. Bozza, and F.C. Gomes. 2015. Activated microglia-induced deficits in excitatory synapses through IL-1beta_ implications for cognitive impairment in sepsis. Molecular Neurobiology 52: 653–663.

    Article  CAS  PubMed  Google Scholar 

  47. Zrzavy, T., R. Hoftberger, T. Berger, H. Rauschka, O. Butovsky, H. Weiner, and H. Lassmann. 2019. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathology and Applied Neurobiology 45: 278–290.

    Article  CAS  PubMed  Google Scholar 

  48. Semmler, A., T. Okulla, M. Sastre, L. Dumitrescu-Ozimek, and M.T. Heneka. 2005. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. Journal of Chemical Neuroanatomy 30: 144–157.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, L.N., X.H. Wang, L. Wu, L. Huang, C.G. Zhao, Q.Y. Peng, and Y.H. Ai. 2016. Diagnostic and predictive levels of calcium-binding protein A8 and tumor necrosis factor receptor-associated factor 6 in sepsis-associated encephalopathy: a prospective observational study. Chinese Medical Journal 129: 1674–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, P., X.R. Chen, F. Xu, C. Liu, C. Li, H. Liu, H. Wang, W. Sun, Y.H. Sheng, and X.Q. Kong. 2018. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sciences 206: 106–116.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Fujian Province (No. 2017J01246) and Youth Research Project of Health Commission of Fujian Province (Nos. 2016-1-28 and 2018-1-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(CSV 67 kb)

ESM 2

(CSV 45 kb)

ESM 3

(CSV 17 kb)

ESM 4

(CSV 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YL., Zhou, XY., Ji, MH. et al. S100A9 Upregulation Contributes to Learning and Memory Impairments by Promoting Microglia M1 Polarization in Sepsis Survivor Mice. Inflammation 44, 307–320 (2021). https://doi.org/10.1007/s10753-020-01334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01334-6

KEY WORDS

Navigation