Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Biological Aspects and Clinical Applications of Mesenchymal Stem Cells: Key Features You Need to be Aware of

Author(s): Mohammad Saeedi, Muhammad S. Nezhad*, Fatemeh Mehranfar, Mahdieh Golpour, Mohammad A. Esakandari, Zahra Rashmeie, Maryam Ghorbani, Fatemeh Nasimi and Seyed N. Hoseinian

Volume 22, Issue 2, 2021

Published on: 07 September, 2020

Page: [200 - 215] Pages: 16

DOI: 10.2174/1389201021666200907121530

Price: $65

Abstract

Mesenchymal Stem Cells (MSCs), a form of adult stem cells, are known to have a selfrenewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and the high capacity of immune modulation have attracted tremendous attention for exerting them in clinical purposes, as they contribute to the tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a stateof- the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs' physiological interaction, such as migration, homing, and tissue repairing mechanisms in different healthy and inflamed tissues.

Keywords: Mesenchymal stem cells, cancer cells, genetically engineered MSCs, tissue repairing, therapeutic, MSC.

Graphical Abstract
[1]
Stem cell decisions: A twist of fate or a niche market? Seminars in cell & developmental biology. Elsevier, 2014.
[2]
Giebel, B.; Beckmann, J. Asymmetric cell divisions of human hematopoietic stem and progenitor cells meet endosomes. Cell Cycle, 2007, 6(18), 2201-2204.
[http://dx.doi.org/10.4161/cc.6.18.4658] [PMID: 17671435]
[3]
Pera, M.F.; Reubinoff, B.; Trounson, A. Human embryonic stem cells. J. Cell Sci., 2000, 113(Pt 1), 5-10.
[PMID: 10591620]
[4]
Ji, K-H.; Xiong, J.; Fan, L-X.; Hu, K-M.; Liu, H-Q. Multilineage differentiation capability comparison between mesenchymal stem cells and multipotent adult progenitor cells. Adv. Stud. Biol., 2009, 1(1), 25-35.
[5]
Simerman, A.A.; Dumesic, D.A.; Chazenbalk, G.D. Pluripotent muse cells derived from human adipose tissue: A new perspective on regenerative medicine and cell therapy. Clin. Transl. Med., 2014, 3(1), 12.
[http://dx.doi.org/10.1186/2001-1326-3-12] [PMID: 24940477]
[6]
Hua, J.; Qiu, P.; Zhu, H.; Cao, H.; Wang, F.; Li, W. Multipotent Mesenchymal Stem Cells (MSCs) from human umbilical cord: Potential differentiation of germ cells. Afr. J. Biochem. Res., 2011, 5(4), 113-123.
[7]
Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 2015, 17(1), 11-22.
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[8]
García-Contreras, M.; Vera-Donoso, C.D.; Hernández-Andreu, J.M.; García-Verdugo, J.M.; Oltra, E. Therapeutic potential of human Adipose-Derived Stem Cells (ADSCs) from cancer patients: A pilot study. PLoS One, 2014, 9(11), e113288.
[http://dx.doi.org/10.1371/journal.pone.0113288] [PMID: 25412325]
[9]
McKee, C.; Chaudhry, G.R. Advances and challenges in stem cell culture. Colloids Surf. B Biointerfaces, 2017, 159, 62-77.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.051] [PMID: 28780462]
[10]
Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25(11), 2739-2749.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[11]
Roufosse, C.A.; Direkze, N.C.; Otto, W.R.; Wright, N.A. Circulating mesenchymal stem cells. Int. J. Biochem. Cell Biol., 2004, 36(4), 585-597.
[http://dx.doi.org/10.1016/j.biocel.2003.10.007] [PMID: 15010325]
[12]
Lee, R.H.; Kim, B.; Choi, I.; Kim, H.; Choi, H.S.; Suh, K.; Bae, Y.C.; Jung, J.S. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem., 2004, 14(4-6), 311-324.
[http://dx.doi.org/10.1159/000080341] [PMID: 15319535]
[13]
De Francesco, F.; Tirino, V.; Desiderio, V.; Ferraro, G.; D’Andrea, F.; Giuliano, M.; Libondi, G.; Pirozzi, G.; De Rosa, A.; Papaccio, G. Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One, 2009, 4(8), e6537.
[http://dx.doi.org/10.1371/journal.pone.0006537] [PMID: 19657392]
[14]
Trubiani, O.; Di Primio, R.; Traini, T.; Pizzicannella, J.; Scarano, A.; Piattelli, A.; Caputi, S. Morphological and cytofluorimetric analysis of adult mesenchymal stem cells expanded ex vivo from periodontal ligament. Int. J. Immunopathol. Pharmacol., 2005, 18(2), 213-221.
[http://dx.doi.org/10.1177/039463200501800204] [PMID: 15888245]
[15]
Erices, A.; Conget, P.; Minguell, J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol., 2000, 109(1), 235-242.
[http://dx.doi.org/10.1046/j.1365-2141.2000.01986.x] [PMID: 10848804]
[16]
in’t Anker, P.S.; Scherjon, S.A.; Kleijburg‐van, d.K.C.; de Groot‐Swings, G.M.; Claas, F.H.; Fibbe, W.E. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004, 22(7), 1338-1345.
[17]
Amé-Thomas, P.; Maby-El Hajjami, H.; Monvoisin, C.; Jean, R.; Monnier, D.; Caulet-Maugendre, S.; Guillaudeux, T.; Lamy, T.; Fest, T.; Tarte, K. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: Role of stromal cells in follicular lymphoma pathogenesis. Blood, 2007, 109(2), 693-702.
[http://dx.doi.org/10.1182/blood-2006-05-020800] [PMID: 16985173]
[18]
Krampera, M.; Sartoris, S.; Liotta, F.; Pasini, A.; Angeli, R.; Cosmi, L.; Andreini, A.; Mosna, F.; Bonetti, B.; Rebellato, E.; Testi, M.G.; Frosali, F.; Pizzolo, G.; Tridente, G.; Maggi, E.; Romagnani, S.; Annunziato, F. Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells Dev., 2007, 16(5), 797-810.
[http://dx.doi.org/10.1089/scd.2007.0024] [PMID: 17999601]
[19]
da Silva Meirelles, L.; Chagastelles, P.C.; Nardi, N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci., 2006, 119(Pt 11), 2204-2213.
[http://dx.doi.org/10.1242/jcs.02932] [PMID: 16684817]
[20]
Teven, C.M.; Liu, X.; Hu, N.; Tang, N.; Kim, S.H.; Huang, E. Epigenetic regulation of mesenchymal stem cells: A focus on osteogenic and adipogenic differentiation. Stem Cells Int., 2011, 2011, 201371.
[http://dx.doi.org/10.4061/2011/201371]
[21]
Chaudhary, D.; Trivedi, R.N.; Kathuria, A.; Goswami, T.K.; Khandia, R.; Munjal, A. In vitro and in vivo immunomodulating properties of mesenchymal stem cells. Recent Pat. Inflamm. Allergy Drug Discov., 2018, 12(1), 59-68.
[http://dx.doi.org/10.2174/1872213X12666180227105924] [PMID: 29485014]
[22]
Najar, M.; Raicevic, G.; Fayyad-Kazan, H.; Bron, D.; Toungouz, M.; Lagneaux, L. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy, 2016, 18(2), 160-171.
[http://dx.doi.org/10.1016/j.jcyt.2015.10.011] [PMID: 26794710]
[23]
Tse, W.T.; Pendleton, J.D.; Beyer, W.M.; Egalka, M.C.; Guinan, E.C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation, 2003, 75(3), 389-397.
[http://dx.doi.org/10.1097/01.TP.0000045055.63901.A9] [PMID: 12589164]
[24]
Bartholomew, A.; Sturgeon, C.; Siatskas, M.; Ferrer, K.; McIntosh, K.; Patil, S.; Hardy, W.; Devine, S.; Ucker, D.; Deans, R.; Moseley, A.; Hoffman, R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol., 2002, 30(1), 42-48.
[http://dx.doi.org/10.1016/S0301-472X(01)00769-X] [PMID: 11823036]
[25]
Glennie, S.; Soeiro, I.; Dyson, P.J.; Lam, E.W-F.; Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005, 105(7), 2821-2827.
[http://dx.doi.org/10.1182/blood-2004-09-3696] [PMID: 15591115]
[26]
Choi, H.; Lee, R.H.; Bazhanov, N.; Oh, J.Y.; Prockop, D.J. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood, 2011, 118(2), 330-338.
[http://dx.doi.org/10.1182/blood-2010-12-327353] [PMID: 21551236]
[27]
Kim, J.; Hematti, P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Exp. Hematol., 2009, 37(12), 1445-1453.
[http://dx.doi.org/10.1016/j.exphem.2009.09.004] [PMID: 19772890]
[28]
Németh, K.; Leelahavanichkul, A.; Yuen, P.S.; Mayer, B.; Parmelee, A.; Doi, K.; Robey, P.G.; Leelahavanichkul, K.; Koller, B.H.; Brown, J.M.; Hu, X.; Jelinek, I.; Star, R.A.; Mezey, E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med., 2009, 15(1), 42-49.
[http://dx.doi.org/10.1038/nm.1905] [PMID: 19098906]
[29]
Sherman, L.S.; Condé-Green, A.; Sandiford, O.A.; Rameshwar, P. A discussion on adult mesenchymal stem cells for drug delivery: Pros and cons. Ther. Deliv., 2015, 6(12), 1335-1346.
[http://dx.doi.org/10.4155/tde.15.80] [PMID: 26652280]
[30]
Sherman, L.S.; Munoz, J.; Patel, S.A.; Dave, M.A.; Paige, I.; Rameshwar, P. Moving from the laboratory bench to patients’ bedside: Considerations for effective therapy with stem cells. Clin. Transl. Sci., 2011, 4(5), 380-386.
[http://dx.doi.org/10.1111/j.1752-8062.2011.00283.x] [PMID: 22029813]
[31]
Honczarenko, M.; Le, Y.; Swierkowski, M.; Ghiran, I.; Glodek, A.M.; Silberstein, L.E. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 2006, 24(4), 1030-1041.
[http://dx.doi.org/10.1634/stemcells.2005-0319] [PMID: 16253981]
[32]
Herrero, C.; Perez-Simon, J.A. Immunomodulatory effect of mesenchymal stem cells. Rev. Bras. Pesqui. Med. Biol., 2010, 43(5), 425-430.
[33]
Guo, Z.; Zheng, C.; Chen, Z.; Gu, D.; Du, W.; Ge, J.; Han, Z.; Yang, R. Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. Eur. J. Immunol., 2009, 39(10), 2840-2849.
[http://dx.doi.org/10.1002/eji.200839070] [PMID: 19637224]
[34]
Carrión, F.; Nova, E.; Luz, P.; Apablaza, F.; Figueroa, F. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol. Lett., 2011, 135(1-2), 10-16.
[http://dx.doi.org/10.1016/j.imlet.2010.09.006] [PMID: 20888363]
[35]
Wan, Y.Y.; Flavell, R.A. How diverse-CD4 effector T cells and their functions. J. Mol. Cell Biol., 2009, 1(1), 20-36.
[http://dx.doi.org/10.1093/jmcb/mjp001] [PMID: 19482777]
[36]
Pevsner-Fischer, M.; Levin, S.; Zipori, D. The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev. Rep., 2011, 7(3), 560-568.
[http://dx.doi.org/10.1007/s12015-011-9229-7] [PMID: 21437576]
[37]
Honoki, K.; Fujii, H.; Tsujiuchi, T. Cancer stem cell niche: The role of mesenchymal stem cells in tumor microenvironment. Cancer Stem Cells-The Cutting Edge, 2011, 189, 206.
[38]
Sohni, A.; Verfaillie, C.M. Mesenchymal stem cells migration homing and tracking. Stem Cells Int., 2013., Article ID 130763.
[http://dx.doi.org/10.1155/2013/130763]
[39]
Serakinci, N.; Guldberg, P.; Burns, J.S.; Abdallah, B.; Schrødder, H.; Jensen, T.; Kassem, M. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene, 2004, 23(29), 5095-5098.
[http://dx.doi.org/10.1038/sj.onc.1207651] [PMID: 15107831]
[40]
Serakinci, N.; Christensen, R.; Fahrioglu, U.; Sorensen, F.B.; Dagnæs-Hansen, F.; Hajek, M.; Jensen, T.H.; Kolvraa, S.; Keith, N.W. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother. Radiopharm., 2011, 26(6), 767-773.
[http://dx.doi.org/10.1089/cbr.2011.1024] [PMID: 21877908]
[41]
Yu, B.; Zhang, X.; Li, X. Exosomes derived from mesenchymal stem cells. Int. J. Mol. Sci., 2014, 15(3), 4142-4157.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[42]
Rubinstein, P.; Dobrila, L.; Rosenfield, R.E.; Adamson, J.W.; Migliaccio, G.; Migliaccio, A.R.; Taylor, P.E.; Stevens, C.E. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc. Natl. Acad. Sci. USA, 1995, 92(22), 10119-10122.
[http://dx.doi.org/10.1073/pnas.92.22.10119] [PMID: 7479737]
[43]
Wyrsch, A.; dalle Carbonare, V.; Jansen, W.; Chklovskaia, E.; Nissen, C.; Surbek, D.; Holzgreve, W.; Tichelli, A.; Wodnar-Filipowicz, A. Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp. Hematol., 1999, 27(8), 1338-1345.
[http://dx.doi.org/10.1016/S0301-472X(99)00059-4] [PMID: 10428511]
[44]
Prindull, G.; Ben-Ishay, Z.; Ebell, W.; Bergholz, M.; Dirk, T.; Prindull, B. CFU-F circulating in cord blood. Blut, 1987, 54(6), 351-359.
[http://dx.doi.org/10.1007/BF00626017] [PMID: 3496136]
[45]
Goodwin, H.S.; Bicknese, A.R.; Chien, S.N.; Bogucki, B.D.; Quinn, C.O.; Wall, D.A. Multilineage differentiation activity by cells isolated from umbilical cord blood: Expression of bone, fat, and neural markers. Biol. Blood Marrow Transplant., 2001, 7(11), 581-588.
[http://dx.doi.org/10.1053/bbmt.2001.v7.pm11760145] [PMID: 11760145]
[46]
Chang, Y.J.; Shih, D.T.; Tseng, C.P.; Hsieh, T.B.; Lee, D.C.; Hwang, S.M. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells, 2006, 24(3), 679-685.
[http://dx.doi.org/10.1634/stemcells.2004-0308] [PMID: 16179428]
[47]
Marofi, F.; Vahedi, G.; Biglari, A.; Esmaeilzadeh, A.; Athari, S.S. Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer. Front. Immunol., 2017, 8, 1770.
[http://dx.doi.org/10.3389/fimmu.2017.01770] [PMID: 29326689]
[48]
Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(5309), 71-74.
[http://dx.doi.org/10.1126/science.276.5309.71] [PMID: 9082988]
[49]
Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal stem cells for regenerative medicine. Cells, 2019, 8(8), 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[50]
Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., 2001, 7(2), 211-228.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[51]
Mitchell, K.E.; Weiss, M.L.; Mitchell, B.M.; Martin, P.; Davis, D.; Morales, L.; Helwig, B.; Beerenstrauch, M.; Abou-Easa, K.; Hildreth, T.; Troyer, D.; Medicetty, S. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 2003, 21(1), 50-60.
[http://dx.doi.org/10.1634/stemcells.21-1-50] [PMID: 12529551]
[52]
Jin, H.J.; Bae, Y.K.; Kim, M.; Kwon, S.J.; Jeon, H.B.; Choi, S.J.; Kim, S.W.; Yang, Y.S.; Oh, W.; Chang, J.W. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci., 2013, 14(9), 17986-18001.
[http://dx.doi.org/10.3390/ijms140917986] [PMID: 24005862]
[53]
Sun, Z.; Wang, S.; Zhao, R.C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hematol. Oncol., 2014, 7(1), 14.
[http://dx.doi.org/10.1186/1756-8722-7-14] [PMID: 24502410]
[54]
Sordi, V. Mesenchymal stem cell homing capacity. Transplantation, 2009, 87(9)(Suppl.), S42-S45.
[http://dx.doi.org/10.1097/TP.0b013e3181a28533] [PMID: 19424004]
[55]
Shah, K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64(8), 739-748.
[http://dx.doi.org/10.1016/j.addr.2011.06.010] [PMID: 21740940]
[56]
Schu, S.; Nosov, M.; O’Flynn, L.; Shaw, G.; Treacy, O.; Barry, F.; Murphy, M.; O’Brien, T.; Ritter, T. Immunogenicity of allogeneic mesenchymal stem cells. J. Cell. Mol. Med., 2012, 16(9), 2094-2103.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01509.x] [PMID: 22151542]
[57]
Nauta, A.J.; Fibbe, W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007, 110(10), 3499-3506.
[http://dx.doi.org/10.1182/blood-2007-02-069716] [PMID: 17664353]
[58]
Gebler, A.; Zabel, O.; Seliger, B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med., 2012, 18(2), 128-134.
[http://dx.doi.org/10.1016/j.molmed.2011.10.004] [PMID: 22118960]
[59]
Insausti, C.L.; Blanquer, M.; García-Hernández, A.M.; Castellanos, G.; Moraleda, J.M. Amniotic membrane-derived stem cells: Immunomodulatory properties and potential clinical application. Stem Cells Cloning, 2014, 7, 53-63.
[http://dx.doi.org/10.2147/SCCAA.S58696] [PMID: 24744610]
[60]
Wei, X.; Yang, X.; Han, Z.P.; Qu, F.F.; Shao, L.; Shi, Y.F. Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol. Sin., 2013, 34(6), 747-754.
[http://dx.doi.org/10.1038/aps.2013.50] [PMID: 23736003]
[61]
Bianco, P.; Robey, P.G.; Simmons, P.J. Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell, 2008, 2(4), 313-319.
[http://dx.doi.org/10.1016/j.stem.2008.03.002] [PMID: 18397751]
[62]
Owen, M.; Friedenstein, A.J. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba Found. Symp., 1988, 136, 42-60.
[63]
Meirelles, L.S.; Nardi, N.B. Murine marrow-derived mesenchymalstem cell: Isolation, in vitro expansion, and characterization. Br. J. Haematol., 2003, 123(4), 702-711.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04669.x] [PMID: 14616976]
[64]
Baghaei, K.; Hashemi, S.M.; Tokhanbigli, S.; Asadi Rad, A.; Assadzadeh-Aghdaei, H.; Sharifian, A.; Zali, M.R. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol. Hepatol. Bed Bench, 2017, 10(3), 208-213.
[PMID: 29118937]
[65]
Lennon, D.P.; Caplan, A.I. Isolation of rat marrow-derived mesenchymal stem cells. Exp. Hematol., 2006, 34(11), 1606-1607.
[http://dx.doi.org/10.1016/j.exphem.2006.07.015] [PMID: 17046584]
[66]
Ringe, J.; Kaps, C.; Schmitt, B.; Büscher, K.; Bartel, J.; Smolian, H.; Schultz, O.; Burmester, G.R.; Häupl, T.; Sittinger, M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res., 2002, 307(3), 321-327.
[http://dx.doi.org/10.1007/s00441-002-0525-z] [PMID: 11904768]
[67]
Caterson, E.J.; Nesti, L.J.; Danielson, K.G.; Tuan, R.S. Human marrow-derived mesenchymal progenitor cells: Isolation, culture expansion, and analysis of differentiation. Mol. Biotechnol., 2002, 20(3), 245-256.
[http://dx.doi.org/10.1385/MB:20:3:245] [PMID: 11936255]
[68]
Rian, F. Culture of animal cells: A manual of basic technique and specialized applications, 6th ed; Wiley-Blackwell: Hoboken, NJ, 2010, pp. 208-211.
[69]
Salehinejad, P.; Alitheen, N.B.; Ali, A.M.; Omar, A.R.; Mohit, M.; Janzamin, E.; Samani, F.S.; Torshizi, Z.; Nematollahi-Mahani, S.N. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cell. Dev. Biol. Anim., 2012, 48(2), 75-83.
[http://dx.doi.org/10.1007/s11626-011-9480-x] [PMID: 22274909]
[70]
Yoon, J.H.; Roh, E.Y.; Shin, S.; Jung, N.H.; Song, E.Y.; Chang, J.Y.; Kim, B.J.; Jeon, H.W. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. BioMed Res. Int., 2013, 2013, 428726.
[http://dx.doi.org/10.1155/2013/428726] [PMID: 23653895]
[71]
Martin, I.; Muraglia, A.; Campanile, G.; Cancedda, R.; Quarto, R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology, 1997, 138(10), 4456-4462.
[http://dx.doi.org/10.1210/endo.138.10.5425] [PMID: 9322963]
[72]
Bianchi, G.; Banfi, A.; Mastrogiacomo, M.; Notaro, R.; Luzzatto, L.; Cancedda, R.; Quarto, R. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp. Cell Res., 2003, 287(1), 98-105.
[http://dx.doi.org/10.1016/S0014-4827(03)00138-1] [PMID: 12799186]
[73]
Digirolamo, C.M.; Stokes, D.; Colter, D.; Phinney, D.G.; Class, R.; Prockop, D.J. Propagation and senescence of human marrow stromal cells in culture: A simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol., 1999, 107(2), 275-281.
[http://dx.doi.org/10.1046/j.1365-2141.1999.01715.x] [PMID: 10583212]
[74]
Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411), 143-147.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[75]
Jiang, Y.; Jahagirdar, B.N.; Reinhardt, R.L.; Schwartz, R.E.; Keene, C.D.; Ortiz-Gonzalez, X.R.; Reyes, M.; Lenvik, T.; Lund, T.; Blackstad, M.; Du, J.; Aldrich, S.; Lisberg, A.; Low, W.C.; Largaespada, D.A.; Verfaillie, C.M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893), 41-49.
[http://dx.doi.org/10.1038/nature00870] [PMID: 12077603]
[76]
Smith, J.R.; Pochampally, R.; Perry, A.; Hsu, S.C.; Prockop, D.J. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells, 2004, 22(5), 823-831.
[http://dx.doi.org/10.1634/stemcells.22-5-823] [PMID: 15342946]
[77]
Sato, Y.; Araki, H.; Kato, J.; Nakamura, K.; Kawano, Y.; Kobune, M.; Sato, T.; Miyanishi, K.; Takayama, T.; Takahashi, M.; Takimoto, R.; Iyama, S.; Matsunaga, T.; Ohtani, S.; Matsuura, A.; Hamada, H.; Niitsu, Y. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood, 2005, 106(2), 756-763.
[http://dx.doi.org/10.1182/blood-2005-02-0572] [PMID: 15817682]
[78]
Kotton, D.N.; Ma, B.Y.; Cardoso, W.V.; Sanderson, E.A.; Summer, R.S.; Williams, M.C.; Fine, A. Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development, 2001, 128(24), 5181-5188.
[PMID: 11748153]
[79]
Yan, X.L.; Jia, Y.L.; Chen, L.; Zeng, Q.; Zhou, J.N.; Fu, C.J.; Chen, H.X.; Yuan, H.F.; Li, Z.W.; Shi, L.; Xu, Y.C.; Wang, J.X.; Zhang, X.M.; He, L.J.; Zhai, C.; Yue, W.; Pei, X.T. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: Role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology, 2013, 57(6), 2274-2286.
[http://dx.doi.org/10.1002/hep.26257] [PMID: 23316018]
[80]
Shi, Y.; Du, L.; Lin, L.; Wang, Y. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat. Rev. Drug Discov., 2017, 16(1), 35-52.
[http://dx.doi.org/10.1038/nrd.2016.193] [PMID: 27811929]
[81]
Fan, W.; Li, J.; Wang, Y.; Pan, J.; Li, S.; Zhu, L.; Guo, C.; Yan, Z. CD105 promotes chondrogenesis of synovium-derived mesenchymal stem cells through Smad2 signaling. Biochem. Biophys. Res. Commun., 2016, 474(2), 338-344.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.101] [PMID: 27107692]
[82]
Schieker, M.; Pautke, C.; Reitz, K.; Hemraj, I.; Neth, P.; Mutschler, W.; Milz, S. The use of four-colour immunofluorescence techniques to identify mesenchymal stem cells. J. Anat., 2004, 204(2), 133-139.
[http://dx.doi.org/10.1111/j.1469-7580.2004.00252.x] [PMID: 15032920]
[83]
Wagner, J.; Kean, T.; Young, R.; Dennis, J.E.; Caplan, A.I. Optimizing mesenchymal stem cell-based therapeutics. Curr. Opin. Biotechnol., 2009, 20(5), 531-536.
[http://dx.doi.org/10.1016/j.copbio.2009.08.009] [PMID: 19783424]
[84]
Li, G.; Zhang, X.A.; Wang, H.; Wang, X.; Meng, C.L.; Chan, C.Y.; Yew, D.T.; Tsang, K.S.; Li, K.; Tsai, S.N.; Ngai, S.M.; Han, Z.C.; Lin, M.C.; He, M.L.; Kung, H.F. Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: Implication in the migration. Proteomics, 2009, 9(1), 20-30.
[http://dx.doi.org/10.1002/pmic.200701195] [PMID: 19116983]
[85]
Devine, S.M.; Cobbs, C.; Jennings, M.; Bartholomew, A.; Hoffman, R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 2003, 101(8), 2999-3001.
[http://dx.doi.org/10.1182/blood-2002-06-1830] [PMID: 12480709]
[86]
Kariminekoo, S.; Movassaghpour, A.; Rahimzadeh, A.; Talebi, M.; Shamsasenjan, K.; Akbarzadeh, A. Implications of mesenchymal stem cells in regenerative medicine. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 749-757.
[http://dx.doi.org/10.3109/21691401.2015.1129620] [PMID: 26757594]
[87]
Kang, J.W.; Koo, H.C.; Hwang, S.Y.; Kang, S.K.; Ra, J.C.; Lee, M.H.; Park, Y.H. Immunomodulatory effects of human amniotic membrane-derived mesenchymal stem cells. J. Vet. Sci., 2012, 13(1), 23-31.
[http://dx.doi.org/10.4142/jvs.2012.13.1.23] [PMID: 22437532]
[88]
Yagi, H.; Soto-Gutierrez, A.; Parekkadan, B.; Kitagawa, Y.; Tompkins, R.G.; Kobayashi, N.; Yarmush, M.L. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant., 2010, 19(6), 667-679.
[http://dx.doi.org/10.3727/096368910X508762] [PMID: 20525442]
[89]
Rastegar, F.; Shenaq, D.; Huang, J.; Zhang, W.; Zhang, B-Q.; He, B-C.; Chen, L.; Zuo, G.W.; Luo, Q.; Shi, Q.; Wagner, E.R.; Huang, E.; Gao, Y.; Gao, J.L.; Kim, S.H.; Zhou, J.Z.; Bi, Y.; Su, Y.; Zhu, G.; Luo, J.; Luo, X.; Qin, J.; Reid, R.R.; Luu, H.H.; Haydon, R.C.; Deng, Z.L.; He, T.C. Mesenchymal stem cells: Molecular characteristics and clinical applications. World J. Stem Cells, 2010, 2(4), 67-80.
[http://dx.doi.org/10.4252/wjsc.v2.i4.67] [PMID: 21607123]
[90]
Krampera, M.; Glennie, S.; Dyson, J.; Scott, D.; Laylor, R.; Simpson, E.; Dazzi, F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003, 101(9), 3722-3729.
[http://dx.doi.org/10.1182/blood-2002-07-2104] [PMID: 12506037]
[91]
Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, A.M. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002, 99(10), 3838-3843.
[http://dx.doi.org/10.1182/blood.V99.10.3838] [PMID: 11986244]
[92]
Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; Uccelli, A. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006, 107(1), 367-372.
[http://dx.doi.org/10.1182/blood-2005-07-2657] [PMID: 16141348]
[93]
Song, J.Y.; Kang, H.J.; Ju, H.M.; Park, A.; Park, H.; Hong, J.S.; Kim, C.J.; Shim, J.Y.; Yu, J.; Choi, J. Umbilical cord-derived mesenchymal stem cell extracts ameliorate atopic dermatitis in mice by reducing the T cell responses. Sci. Rep., 2019, 9(1), 6623.
[http://dx.doi.org/10.1038/s41598-019-42964-7] [PMID: 31036853]
[94]
Sotiropoulou, P.A.; Perez, S.A.; Salagianni, M.; Baxevanis, C.N.; Papamichail, M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 2006, 24(2), 462-471.
[http://dx.doi.org/10.1634/stemcells.2004-0331] [PMID: 16109759]
[95]
English, K.; Barry, F.P.; Mahon, B.P. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol. Lett., 2008, 115(1), 50-58.
[http://dx.doi.org/10.1016/j.imlet.2007.10.002] [PMID: 18022251]
[96]
Spaggiari, G.M.; Abdelrazik, H.; Becchetti, F.; Moretta, L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2. Blood, 2009, 113(26), 6576-6583.
[http://dx.doi.org/10.1182/blood-2009-02-203943] [PMID: 19398717]
[97]
Tidd, N.; Michelsen, J.; Hilbert, B.; Quinn, J.C. Minicircle mediated gene delivery to canine and equine mesenchymal stem cells. Int. J. Mol. Sci., 2017, 18(4), 819.
[http://dx.doi.org/10.3390/ijms18040819] [PMID: 28417917]
[98]
Parekkadan, B.; van Poll, D.; Suganuma, K.; Carter, E.A.; Berthiaume, F.; Tilles, A.W.; Yarmush, M.L. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One, 2007, 2(9), e941.
[http://dx.doi.org/10.1371/journal.pone.0000941] [PMID: 17895982]
[99]
Jang, Y.O.; Kim, Y.J.; Baik, S.K.; Kim, M.Y.; Eom, Y.W.; Cho, M.Y.; Park, H.J.; Park, S.Y.; Kim, B.R.; Kim, J.W.; Soo Kim, H.; Kwon, S.O.; Choi, E.H.; Kim, Y.M. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: A pilot study. Liver Int., 2014, 34(1), 33-41.
[http://dx.doi.org/10.1111/liv.12218] [PMID: 23782511]
[100]
Knight, M.N.; Hankenson, K.D. Mesenchymal stem cells in bone regeneration. Adv. Wound Care (New Rochelle), 2013, 2(6), 306-316.
[http://dx.doi.org/10.1089/wound.2012.0420] [PMID: 24527352]
[101]
Rhee, K-J.; Lee, J.I.; Eom, Y.W. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int. J. Mol. Sci., 2015, 16(12), 30015-30033.
[http://dx.doi.org/10.3390/ijms161226215] [PMID: 26694366]
[102]
Keating, A. Mesenchymal stromal cells: New directions. Cell Stem Cell, 2012, 10(6), 709-716.
[http://dx.doi.org/10.1016/j.stem.2012.05.015] [PMID: 22704511]
[103]
Nonnis, S.; Maffioli, E.; Zanotti, L.; Santagata, F.; Negri, A.; Viola, A.; Elliman, S.; Tedeschi, G. Effect of fetal bovine serum in culture media on MS analysis of mesenchymal stromal cells secretome. EuPA Open Proteom., 2016, 10, 28-30.
[http://dx.doi.org/10.1016/j.euprot.2016.01.005] [PMID: 29900097]
[104]
Chen, S-L.; Fang, W.W.; Qian, J.; Ye, F.; Liu, Y.H.; Shan, S-J.; Zhang, J.J.; Lin, S.; Liao, L.M.; Zhao, R.C. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin. Med. J. (Engl.), 2004, 117(10), 1443-1448.
[PMID: 15498362]
[105]
Amado, L.C.; Saliaris, A.P.; Schuleri, K.H.; St John, M.; Xie, J-S.; Cattaneo, S.; Durand, D.J.; Fitton, T.; Kuang, J.Q.; Stewart, G.; Lehrke, S.; Baumgartner, W.W.; Martin, B.J.; Heldman, A.W.; Hare, J.M. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11474-11479.
[http://dx.doi.org/10.1073/pnas.0504388102] [PMID: 16061805]
[106]
Le Blanc, K.; Frassoni, F.; Ball, L.; Locatelli, F.; Roelofs, H.; Lewis, I.; Lanino, E.; Sundberg, B.; Bernardo, M.E.; Remberger, M.; Dini, G.; Egeler, R.M.; Bacigalupo, A.; Fibbe, W.; Ringdén, O. Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet, 2008, 371(9624), 1579-1586.
[http://dx.doi.org/10.1016/S0140-6736(08)60690-X] [PMID: 18468541]
[107]
Schlosser, S.; Dennler, C.; Schweizer, R.; Eberli, D.; Stein, J.V.; Enzmann, V.; Giovanoli, P.; Erni, D.; Plock, J.A. Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvasc. Res., 2012, 83(3), 267-275.
[http://dx.doi.org/10.1016/j.mvr.2012.02.011] [PMID: 22391452]
[108]
Ding, J.; Chen, B.; Lv, T.; Liu, X.; Fu, X.; Wang, Q.; Yan, L.; Kang, N.; Cao, Y.; Xiao, R. Bone marrow mesenchymal stem cell-based engineered cartilage ameliorates polyglycolic acid/polylactic acid scaffold-induced inflammation through M2 polarization of macrophages in a pig model. Stem Cells Transl. Med., 2016, 5(8), 1079-1089.
[http://dx.doi.org/10.5966/sctm.2015-0263] [PMID: 27280797]
[109]
Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol., 2008, 8(9), 726-736.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[110]
Lombardo, E.; van der Poll, T.; DelaRosa, O.; Dalemans, W. Mesenchymal stem cells as a therapeutic tool to treat sepsis. World J. Stem Cells, 2015, 7(2), 368-379.
[http://dx.doi.org/10.4252/wjsc.v7.i2.368] [PMID: 25815121]
[111]
Wu, T.; Liu, Y.; Wang, B.; Li, G. The roles of mesenchymal stem cells in tissue repair and disease modification. Curr. Stem Cell Res. Ther., 2014, 9(5), 424-431.
[http://dx.doi.org/10.2174/1574888X09666140616125446] [PMID: 24998241]
[112]
Estrada, J.C.; Torres, Y.; Benguria, A.; Dopazo, A.; Roche, E.; Carrera-Quintanar, L. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy., 2013, 4(6), e691.
[http://dx.doi.org/10.1038/cddis.2013.211]
[113]
Butcher, E.C.; Picker, L.J. Lymphocyte homing and homeostasis. Science, 1996, 272(5258), 60-66.
[http://dx.doi.org/10.1126/science.272.5258.60] [PMID: 8600538]
[114]
Kyriakou, C.; Rabin, N.; Pizzey, A.; Nathwani, A.; Yong, K. Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model haematologica, 2008, 93(10), 1457-1465.
[115]
Thankamony, S.P.; Sackstein, R. Enforced hematopoietic cell E- and L-Selectin Ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc. Natl. Acad. Sci. USA, 2011, 108(6), 2258-2263.
[http://dx.doi.org/10.1073/pnas.1018064108] [PMID: 21257905]
[116]
Nitzsche, F.; Müller, C.; Lukomska, B.; Jolkkonen, J.; Deten, A.; Boltze, J. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 2017, 35(6), 1446-1460.
[http://dx.doi.org/10.1002/stem.2614] [PMID: 28316123]
[117]
Li, Y.; Zhang, D.; Xu, L.; Dong, L.; Zheng, J.; Lin, Y.; Huang, J.; Zhang, Y.; Tao, Y.; Zang, X.; Li, D.; Du, M. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell. Mol. Immunol., 2019, 16(12), 908-920.
[http://dx.doi.org/10.1038/s41423-019-0204-6] [PMID: 30778166]
[118]
Oh, S.H.; Kim, H.N.; Park, H-J.; Shin, J.Y.; Lee, P.H. Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the WNT signaling pathway in an Alzheimer’s disease model. Cell Transplant., 2015, 24(6), 1097-1109.
[http://dx.doi.org/10.3727/096368914X679237] [PMID: 24612635]
[119]
Ries, C.; Egea, V.; Karow, M.; Kolb, H.; Jochum, M.; Neth, P. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood, 2007, 109(9), 4055-4063.
[http://dx.doi.org/10.1182/blood-2006-10-051060] [PMID: 17197427]
[120]
De Becker, A.; Van Hummelen, P.; Bakkus, M.; Vande Broek, I.; De Wever, J.; De Waele, M.; Van Riet, I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 2007, 92(4), 440-449.
[http://dx.doi.org/10.3324/haematol.10475] [PMID: 17488654]
[121]
Gao, J.; Dennis, J.E.; Muzic, R.F.; Lundberg, M.; Caplan, A.I. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs (Print), 2001, 169(1), 12-20.
[http://dx.doi.org/10.1159/000047856] [PMID: 11340257]
[122]
Barbash, I.M.; Chouraqui, P.; Baron, J.; Feinberg, M.S.; Etzion, S.; Tessone, A.; Miller, L.; Guetta, E.; Zipori, D.; Kedes, L.H.; Kloner, R.A.; Leor, J. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution. Circulation, 2003, 108(7), 863-868.
[http://dx.doi.org/10.1161/01.CIR.0000084828.50310.6A] [PMID: 12900340]
[123]
Munoz, J.L.; Bliss, S.A.; Greco, S.J.; Ramkissoon, S.H.; Ligon, K.L.; Rameshwar, P. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids, 2013, 2(10), e126.
[http://dx.doi.org/10.1038/mtna.2013.60] [PMID: 24084846]
[124]
Castillo, M.; Liu, K.; Bonilla, L.; Rameshwar, P. The immune properties of mesenchymal stem cells. Int. J. Biomed. Sci., 2007, 3(2), 76-80.
[PMID: 23675026]
[125]
Li, G.; Yuan, L.; Ren, X.; Nian, H.; Zhang, L.; Han, Z.C.; Li, X.; Zhang, X. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin. Exp. Immunol., 2013, 173(1), 28-37.
[http://dx.doi.org/10.1111/cei.12080] [PMID: 23607419]
[126]
Kean, T.J.; Lin, P.; Caplan, A.I.; Dennis, J.E. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int., 2013, 2013, 732742.
[http://dx.doi.org/10.1155/2013/732742]
[127]
Eggenhofer, E.; Luk, F.; Dahlke, M.H.; Hoogduijn, M.J. The life and fate of mesenchymal stem cells. Front. Immunol., 2014, 5, 148.
[http://dx.doi.org/10.3389/fimmu.2014.00148] [PMID: 24904568]
[128]
Sackstein, R.; Merzaban, J.S.; Cain, D.W.; Dagia, N.M.; Spencer, J.A.; Lin, C.P.; Wohlgemuth, R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med., 2008, 14(2), 181-187.
[http://dx.doi.org/10.1038/nm1703] [PMID: 18193058]
[129]
Park, M.; Kim, Y-H.; Woo, S-Y.; Lee, H.J.; Yu, Y.; Kim, H.S.; Park, Y.S.; Jo, I.; Park, J.W.; Jung, S.C.; Lee, H.; Jeong, B.; Ryu, K.H. Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Sci. Rep., 2015, 5, 8616.
[http://dx.doi.org/10.1038/srep08616] [PMID: 25722117]
[130]
Rustad, K.C.; Gurtner, G.C. Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle), 2012, 1(4), 147-152.
[http://dx.doi.org/10.1089/wound.2011.0314] [PMID: 24527296]
[131]
Chi, Y.; Han, Z-B.; Xu, F-Y.; Wang, Y-W.; Feng, X-M.; Chen, F.; Ma, F.X.; Du, W.J.; Han, Z.C. Adipogenic potentials of mesenchymal stem cells from human bone marrow, umbilical cord and adipose tissue are different. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2014, 22(3), 588-594.
[PMID: 24989259]
[132]
Li, C.Y.; Wu, X.Y.; Tong, J.B.; Yang, X.X.; Zhao, J.L.; Zheng, Q.F.; Zhao, G.B.; Ma, Z.J. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res. Ther., 2015, 6(1), 55.
[http://dx.doi.org/10.1186/s13287-015-0066-5] [PMID: 25884704]
[133]
Fritz, V.; Jorgensen, C. Mesenchymal stem cells: An emerging tool for cancer targeting and therapy. Curr. Stem Cell Res. Ther., 2008, 3(1), 32-42.
[http://dx.doi.org/10.2174/157488808783489462] [PMID: 18220921]
[134]
Rüster, B.; Göttig, S.; Ludwig, R.J.; Bistrian, R.; Müller, S.; Seifried, E.; Gille, J.; Henschler, R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108(12), 3938-3944.
[http://dx.doi.org/10.1182/blood-2006-05-025098] [PMID: 16896152]
[135]
Phinney, D.G.; Pittenger, M.F. Concise review: MSC‐derived exosomes for cell‐free therapy. Stem Cells, 2017, 35(4), 851-858.
[http://dx.doi.org/10.1002/stem.2575] [PMID: 28294454]
[136]
Arslan, F.; Lai, R.C.; Smeets, M.B.; Akeroyd, L.; Choo, A.; Aguor, E.N.; Timmers, L.; van Rijen, H.V.; Doevendans, P.A.; Pasterkamp, G.; Lim, S.K.; de Kleijn, D.P. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. (Amst.), 2013, 10(3), 301-312.
[http://dx.doi.org/10.1016/j.scr.2013.01.002] [PMID: 23399448]
[137]
Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.K.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; Pasterkamp, G.; de Kleijn, D.P.; Lim, S.K. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. (Amst.), 2010, 4(3), 214-222.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[138]
Vonk, L.A.; van Dooremalen, S.F.J.; Liv, N.; Klumperman, J.; Coffer, P.J.; Saris, D.B.F.; Lorenowicz, M.J. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics, 2018, 8(4), 906-920.
[http://dx.doi.org/10.7150/thno.20746] [PMID: 29463990]
[139]
Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; Busca, A.; Falda, M.; Bussolati, B.; Tetta, C.; Camussi, G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol., 2009, 20(5), 1053-1067.
[http://dx.doi.org/10.1681/ASN.2008070798] [PMID: 19389847]
[140]
Xin, H.; Li, Y.; Liu, Z.; Wang, X.; Shang, X.; Cui, Y.; Zhang, Z.G.; Chopp, M. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 2013, 31(12), 2737-2746.
[http://dx.doi.org/10.1002/stem.1409] [PMID: 23630198]
[141]
Li, T.; Yan, Y.; Wang, B.; Qian, H.; Zhang, X.; Shen, L.; Wang, M.; Zhou, Y.; Zhu, W.; Li, W.; Xu, W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev., 2013, 22(6), 845-854.
[http://dx.doi.org/10.1089/scd.2012.0395] [PMID: 23002959]
[142]
Zhang, B.; Wang, M.; Gong, A.; Zhang, X.; Wu, X.; Zhu, Y.; Shi, H.; Wu, L.; Zhu, W.; Qian, H.; Xu, W. HucMSC‐exosome mediated‐Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 2015, 33(7), 2158-2168.
[http://dx.doi.org/10.1002/stem.1771] [PMID: 24964196]
[143]
Nakamura, Y.; Miyaki, S.; Ishitobi, H.; Matsuyama, S.; Nakasa, T.; Kamei, N.; Akimoto, T.; Higashi, Y.; Ochi, M. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett., 2015, 589(11), 1257-1265.
[http://dx.doi.org/10.1016/j.febslet.2015.03.031] [PMID: 25862500]
[144]
Tao, S-C.; Yuan, T.; Zhang, Y-L.; Yin, W-J.; Guo, S-C.; Zhang, C-Q. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7(1), 180-195.
[http://dx.doi.org/10.7150/thno.17133] [PMID: 28042326]
[145]
Zhu, J.; Lu, K.; Zhang, N.; Zhao, Y.; Ma, Q.; Shen, J.; Lin, Y.; Xiang, P.; Tang, Y.; Hu, X.; Chen, J.; Zhu, W.; Webster, K.A.; Wang, J.; Yu, H. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1659-1670.
[PMID: 29141446]
[146]
Gao, H.; Priebe, W.; Glod, J.; Banerjee, D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells, 2009, 27(4), 857-865.
[http://dx.doi.org/10.1002/stem.23] [PMID: 19350687]
[147]
Sucher, R.; Schroecksnadel, K.; Weiss, G.; Margreiter, R.; Fuchs, D.; Brandacher, G. Neopterin, a prognostic marker in human malignancies. Cancer Lett., 2010, 287(1), 13-22.
[http://dx.doi.org/10.1016/j.canlet.2009.05.008] [PMID: 19500901]
[148]
Lourenco, S.; Teixeira, V.H.; Kalber, T.; Jose, R.J.; Floto, R.A.; Janes, S.M. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J. Immunol., 2015, 194(7), 3463-3474.
[http://dx.doi.org/10.4049/jimmunol.1402097] [PMID: 25712213]
[149]
Wobus, M.; List, C.; Dittrich, T.; Dhawan, A.; Duryagina, R.; Arabanian, L.S.; Kast, K.; Wimberger, P.; Stiehler, M.; Hofbauer, L.C.; Jakob, F.; Ehninger, G.; Anastassiadis, K.; Bornhäuser, M. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int. J. Cancer, 2015, 136(1), 44-54.
[http://dx.doi.org/10.1002/ijc.28960] [PMID: 24806942]
[150]
Kalimuthu, S.; Oh, J.M.; Gangadaran, P.; Zhu, L.; Lee, H.W.; Rajendran, R.L. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int., 2017, 2017, 8085637.
[http://dx.doi.org/10.1155/2017/8085637]
[151]
Fathi, E.; Sanaat, Z.; Farahzadi, R. Mesenchymal stem cells in acute myeloid leukemia: A focus on mechanisms involved and therapeutic concepts. Blood Res., 2019, 54(3), 165-174.
[http://dx.doi.org/10.5045/br.2019.54.3.165] [PMID: 31730689]
[152]
Lu, L.; Chen, G.; Yang, J.; Ma, Z.; Yang, Y.; Hu, Y.; Lu, Y.; Cao, Z.; Wang, Y.; Wang, X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed. Pharmacother., 2019., 112108625.
[http://dx.doi.org/10.1016/j.biopha.2019.108625] [PMID: 30784920]
[153]
Studeny, M.; Marini, F.C.; Champlin, R.E.; Zompetta, C.; Fidler, I.J.; Andreeff, M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res., 2002, 62(13), 3603-3608.
[PMID: 12097260]
[154]
Ren, C.; Kumar, S.; Chanda, D.; Kallman, L.; Chen, J.; Mountz, J.D.; Ponnazhagan, S. Cancer gene therapy using mesenchymal stem cells expressing interferon-β in a mouse prostate cancer lung metastasis model. Gene Ther., 2008, 15(21), 1446-1453.
[http://dx.doi.org/10.1038/gt.2008.101] [PMID: 18596829]
[155]
Seo, S.H.; Kim, K.S.; Park, S.H.; Suh, Y.S.; Kim, S.J.; Jeun, S.S.; Sung, Y.C. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther., 2011, 18(5), 488-495.
[http://dx.doi.org/10.1038/gt.2010.170] [PMID: 21228885]
[156]
Loebinger, M.R.; Eddaoudi, A.; Davies, D.; Janes, S.M. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res., 2009, 69(10), 4134-4142.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4698] [PMID: 19435900]
[157]
Ren, C.; Kumar, S.; Chanda, D.; Chen, J.; Mountz, J.D.; Ponnazhagan, S. Therapeutic potential of mesenchymal stem cells producing interferon-α in a mouse melanoma lung metastasis model. Stem Cells, 2008, 26(9), 2332-2338.
[http://dx.doi.org/10.1634/stemcells.2008-0084] [PMID: 18617688]
[158]
Qiao, L.; Xu, Z.L.; Zhao, T.J.; Ye, L.H.; Zhang, X.D. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett., 2008, 269(1), 67-77.
[http://dx.doi.org/10.1016/j.canlet.2008.04.032] [PMID: 18571836]
[159]
Ramasamy, R.; Lam, E.W.; Soeiro, I.; Tisato, V.; Bonnet, D.; Dazzi, F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth. Leukemia, 2007, 21(2), 304-310.
[http://dx.doi.org/10.1038/sj.leu.2404489] [PMID: 17170725]
[160]
Tian, L.L.; Yue, W.; Zhu, F.; Li, S.; Li, W.; Li, W. Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J. Cell. Physiol., 2011, 226(7), 1860-1867.
[http://dx.doi.org/10.1002/jcp.22511] [PMID: 21442622]
[161]
Ding, Y.; Lu, H.; Lu, S.F.; Lu, R.N.; Liu, P.; Wu, Y.J.; Li, J.Y. Effects of human bone marrow mesenchymal stem cells on proliferation and apoptosis of K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2009, 17(1), 137-140.
[PMID: 19236765]
[162]
Shah, K. Encapsulated stem cells for cancer therapy. Biomatter, 2013, 3(1), e24278.
[http://dx.doi.org/10.4161/biom.24278] [PMID: 23507920]
[163]
Qiao, L.; Xu, Z.; Zhao, T.; Zhao, Z.; Shi, M.; Zhao, R.C.; Ye, L.; Zhang, X. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res., 2008, 18(4), 500-507.
[http://dx.doi.org/10.1038/cr.2008.40] [PMID: 18364678]
[164]
Qiao, L.; Zhao, T.J.; Wang, F.Z.; Shan, C.L.; Ye, L.H.; Zhang, X.D. NF-kappaB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells. Acta Pharmacol. Sin., 2008, 29(3), 333-340.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00751.x] [PMID: 18298898]
[165]
Chen, X.; Lin, X.; Zhao, J.; Shi, W.; Zhang, H.; Wang, Y.; Kan, B.; Du, L.; Wang, B.; Wei, Y.; Liu, Y.; Zhao, X. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther., 2008, 16(4), 749-756.
[http://dx.doi.org/10.1038/mt.2008.3] [PMID: 18362930]
[166]
Kidd, S.; Caldwell, L.; Dietrich, M.; Samudio, I.; Spaeth, E.L.; Watson, K.; Shi, Y.; Abbruzzese, J.; Konopleva, M.; Andreeff, M.; Marini, F.C. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy, 2010, 12(5), 615-625.
[http://dx.doi.org/10.3109/14653241003631815] [PMID: 20230221]
[167]
Collino, F.; Bruno, S.; Lindoso, R.S.; Camussi, G. miRNA expression in mesenchymal stem cells. Curr. Pathobiol. Rep., 2014, 2(3), 101-107.
[http://dx.doi.org/10.1007/s40139-014-0045-z]
[168]
Lang, F.M.; Hossain, A.; Gumin, J.; Momin, E.N.; Shimizu, Y.; Ledbetter, D.; Shahar, T.; Yamashita, S.; Kerrigan, P.B.; Fueyo, J.; Sawaya, R.; Lang, F.F. Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neurooncology, 2018, 20(3), 380-390.
[http://dx.doi.org/10.1093/neuonc/nox152] [PMID: 29016843]
[169]
Kéramidas, M.; de Fraipont, F.; Karageorgis, A.; Moisan, A.; Persoons, V.; Richard, M-J.; Coll, J.L.; Rome, C. The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Res. Ther., 2013, 4(2), 41.
[http://dx.doi.org/10.1186/scrt195] [PMID: 23628074]
[170]
Coccè, V.; Farronato, D.; Brini, A.T.; Masia, C.; Giannì, A.B.; Piovani, G.; Sisto, F.; Alessandri, G.; Angiero, F.; Pessina, A. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci. Rep., 2017, 7(1), 9376.
[http://dx.doi.org/10.1038/s41598-017-09175-4] [PMID: 28839168]
[171]
Cho, B.S.; Kim, J.O.; Ha, D.H.; Yi, Y.W. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res. Ther., 2018, 9(1), 187.
[http://dx.doi.org/10.1186/s13287-018-0939-5] [PMID: 29996938]
[172]
Loebinger, M.R.; Janes, S.M. Stem cells as vectors for antitumour therapy. Thorax, 2010, 65(4), 362-369.
[http://dx.doi.org/10.1136/thx.2009.128025] [PMID: 20388765]
[173]
Dwyer, R.M.; Khan, S.; Barry, F.P.; O’Brien, T.; Kerin, M.J. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res. Ther., 2010, 1(3), 25.
[http://dx.doi.org/10.1186/scrt25] [PMID: 20699014]
[174]
Studeny, M.; Marini, F.C.; Champlin, R.E.; Zompetta, C.; Fidler, I.J.; Andreeff, M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res., 2002, 62(13), 3603-3608.
[PMID: 12097260]
[175]
Ahn, J.K. woo Lee, H.; won Seo, K.; keun Kang, S.; chan Ra, J.; young Youn, H. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma. PLoS One, 2013, 8(9), e74897.
[176]
You, Q.; Yao, Y.; Zhang, Y.; Fu, S.; Du, M.; Zhang, G. Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo. Mol. Med. Rep., 2015, 12(4), 4859-4866.
[http://dx.doi.org/10.3892/mmr.2015.4076] [PMID: 26179662]
[177]
Martinez-Quintanilla, J.; Bhere, D.; Heidari, P.; He, D.; Mahmood, U.; Shah, K. Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells, 2013, 31(8), 1706-1714.
[http://dx.doi.org/10.1002/stem.1355] [PMID: 23389839]
[178]
Perna, S.K.; Pagliara, D.; Mahendravada, A.; Liu, H.; Brenner, M.K.; Savoldo, B. Interleukin-7 mediates selective expansion of tumor-redirected Cytotoxic T Lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin. Cancer Res., 2014, 20(1), 131-139.
[179]
Golinelli, G.; Grisendi, G.; Prapa, M.; Bestagno, M.; Spano, C.; Rossignoli, F.; Bambi, F.; Sardi, I.; Cellini, M.; Horwitz, E.M.; Feletti, A.; Pavesi, G.; Dominici, M. Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther., 2020, 27, 558-570.
[http://dx.doi.org/10.1038/s41417-018-0062-x] [PMID: 30464207]
[180]
Hombach, A.A.; Geumann, U.; Günther, C.; Hermann, F.G.; Abken, H. IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) improve a CAR T cell attack against colorectal cancer cells. Cells, 2020, 9(4), 873.
[http://dx.doi.org/10.3390/cells9040873] [PMID: 32260097]
[181]
Stagg, J.; Lejeune, L.; Paquin, A.; Galipeau, J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther., 2004, 15(6), 597-608.
[http://dx.doi.org/10.1089/104303404323142042] [PMID: 15212718]
[182]
Willis, G.R.; Fernandez-Gonzalez, A.; Anastas, J.; Vitali, S.H.; Liu, X.; Ericsson, M.; Kwong, A.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med., 2018, 197(1), 104-116.
[http://dx.doi.org/10.1164/rccm.201705-0925OC] [PMID: 28853608]
[183]
Sasportas, L.S.; Kasmieh, R.; Wakimoto, H.; Hingtgen, S.; van de Water, J.A.; Mohapatra, G.; Figueiredo, J.L.; Martuza, R.L.; Weissleder, R.; Shah, K. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4822-4827.
[http://dx.doi.org/10.1073/pnas.0806647106] [PMID: 19264968]
[184]
Duebgen, M.; Martinez-Quintanilla, J.; Tamura, K.; Hingtgen, S.; Redjal, N.; Wakimoto, H.; Shah, K. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J. Natl. Cancer Inst., 2014, 106(6), dju090.
[http://dx.doi.org/10.1093/jnci/dju090] [PMID: 24838834]
[185]
Kalimuthu, S.; Gangadaran, P.; Rajendran, R.L.; Zhu, L.; Oh, J.M.; Lee, H.W.; Gopal, A.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front. Pharmacol., 2018, 9, 1116.
[http://dx.doi.org/10.3389/fphar.2018.01116] [PMID: 30319428]
[186]
Chulpanova, D.S.; Kitaeva, K.V.; Tazetdinova, L.G.; James, V.; Rizvanov, A.A.; Solovyeva, V.V. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front. Pharmacol., 2018, 9, 259.
[http://dx.doi.org/10.3389/fphar.2018.00259] [PMID: 29615915]
[187]
Khakoo, A.Y.; Pati, S.; Anderson, S.A.; Reid, W.; Elshal, M.F.; Rovira, I.I.; Nguyen, A.T.; Malide, D.; Combs, C.A.; Hall, G.; Zhang, J.; Raffeld, M.; Rogers, T.B.; Stetler-Stevenson, W.; Frank, J.A.; Reitz, M.; Finkel, T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med., 2006, 203(5), 1235-1247.
[http://dx.doi.org/10.1084/jem.20051921] [PMID: 16636132]
[188]
Klopp, A.H.; Gupta, A.; Spaeth, E.; Andreeff, M.; Marini, F. III Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells, 2011, 29(1), 11-19.
[http://dx.doi.org/10.1002/stem.559] [PMID: 21280155]
[189]
Li, G.; Zhang, R.; Zhang, X.; Shao, S.; Hu, F.; Feng, Y. Human colorectal cancer derived-MSCs promote tumor cells escape from senescence via P53/P21 pathway. Clin. Transl. Oncol., 2020, 22(4), 503-511.
[http://dx.doi.org/10.1007/s12094-019-02152-5] [PMID: 31218648]
[190]
Babaei, A.; Baghi, H.B. In vitro anti-cancer activity of adipose-derived mesenchymal stem cells increased after infection with oncolytic reovirus. Adv. Pharmaceut. Bullet, 2021.
[191]
Chen, C.; Hou, J. Mesenchymal stem cell-based therapy in kidney transplantation. Stem Cell Res. Ther., 2016, 7(1), 16.
[http://dx.doi.org/10.1186/s13287-016-0283-6] [PMID: 26852923]
[192]
Moreno, R.; Fajardo, C.A.; Farrera-Sal, M.; Perisé-Barrios, A.J.; Morales-Molina, A.; Al-Zaher, A.A.; García-Castro, J.; Alemany, R. Enhanced antitumor efficacy of oncolytic adenovirus-loaded menstrual blood-derived mesenchymal stem cells in combination with peripheral blood mononuclear cells. Mol. Cancer Ther., 2019, 18(1), 127-138.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0431] [PMID: 30322950]
[193]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[194]
Baeza, A.; Colilla, M.; Vallet-Regí, M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin. Drug Deliv., 2015, 12(2), 319-337.
[http://dx.doi.org/10.1517/17425247.2014.953051] [PMID: 25421898]
[195]
Vallet-Regi, M.; Ramila, A.; Del Real, R.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater., 2001, 13(2), 308-311.
[http://dx.doi.org/10.1021/cm0011559]
[196]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[197]
Baeza, A.; Manzano, M.; Colilla, M.; Vallet-Regí, M. Recent advances in mesoporous silica nanoparticles for antitumor therapy: Our contribution. Biomater. Sci., 2016, 4(5), 803-813.
[http://dx.doi.org/10.1039/C6BM00039H] [PMID: 26902682]
[198]
Zhang, Z.; Wang, J.; Chen, C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater., 2013, 25(28), 3869-3880.
[http://dx.doi.org/10.1002/adma.201301890] [PMID: 24048973]
[199]
Jaque, D.; Maestro, L.M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16), 9494-9530.
[200]
Li, L.; Guan, Y.; Liu, H.; Hao, N.; Liu, T.; Meng, X.; Fu, C.; Li, Y.; Qu, Q.; Zhang, Y.; Ji, S.; Chen, L.; Chen, D.; Tang, F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 2011, 5(9), 7462-7470.
[http://dx.doi.org/10.1021/nn202399w] [PMID: 21854047]
[201]
Sadhukha, T.; O’Brien, T.D.; Prabha, S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J. Control. Release, 2014, 196, 243-251.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.015] [PMID: 25456830]
[202]
Kang, S.; Bhang, S.H.; Hwang, S.; Yoon, J-K.; Song, J.; Jang, H-K.; Kim, S.; Kim, B.S. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano, 2015, 9(10), 9678-9690.
[http://dx.doi.org/10.1021/acsnano.5b02207] [PMID: 26348606]
[203]
Roger, M.; Clavreul, A.; Venier-Julienne, M-C.; Passirani, C.; Sindji, L.; Schiller, P.; Montero-Menei, C.; Menei, P. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials, 2010, 31(32), 8393-8401.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.048] [PMID: 20688391]
[204]
Huang, X.; Zhang, F.; Wang, Y.; Sun, X.; Choi, K.Y.; Liu, D.; Choi, J.S.; Shin, T.H.; Cheon, J.; Niu, G.; Chen, X. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano, 2014, 8(5), 4403-4414.
[http://dx.doi.org/10.1021/nn4062726] [PMID: 24754735]
[205]
Wang, X.; Gao, J.; Ouyang, X.; Wang, J.; Sun, X.; Lv, Y. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int. J. Nanomed., 2018, 13, 5231-5248.
[http://dx.doi.org/10.2147/IJN.S167142] [PMID: 30237710]
[206]
Zhao, W.; Zhuang, S.; Qi, X-R. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int. J. Nanomed., 2011, 6, 3087-3098.
[PMID: 22163162]
[207]
Luo, M.; Zhou, Y.; Gao, N.; Cheng, W.; Wang, X.; Cao, J. Mesenchymal stem cells transporting black phosphorus-based biocompatible nanospheres: Active trojan horse for enhanced photothermal cancer therapy. Chem. Eng. J., 2020., 385123942.
[http://dx.doi.org/10.1016/j.cej.2019.123942]
[208]
Timaner, M.; Letko-Khait, N.; Kotsofruk, R.; Benguigui, M.; Beyar-Katz, O.; Rachman-Tzemah, C.; Raviv, Z.; Bronshtein, T.; Machluf, M.; Shaked, Y. Therapy-educated mesenchymal stem cells enrich for tumor-initiating cells. Cancer Res., 2018, 78(5), 1253-1265.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1547] [PMID: 29301792]
[209]
Kaneti, L.; Bronshtein, T.; Malkah Dayan, N.; Kovregina, I.; Letko Khait, N.; Lupu-Haber, Y.; Fliman, M.; Schoen, B.W.; Kaneti, G.; Machluf, M. Nanoghosts as a novel natural nonviral gene delivery platform safely targeting multiple cancers. Nano Lett., 2016, 16(3), 1574-1582.
[http://dx.doi.org/10.1021/acs.nanolett.5b04237] [PMID: 26901695]
[210]
Xiao, Y.; Peng, J.; Liu, Q.; Chen, L.; Shi, K.; Han, R.; Yang, Q.; Zhong, L.; Zha, R.; Qu, Y.; Qian, Z. Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration. Theranostics, 2020, 10(4), 1500-1513.
[http://dx.doi.org/10.7150/thno.39471] [PMID: 32042318]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy