Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Semiconductor Photocatalysts for Solar-to-Hydrogen Energy Conversion: Recent Advances of CdS

Author(s): Yuxue Wei, Honglin Qin, Jinxin Deng, Xiaomeng Cheng, Mengdie Cai, Qin Cheng and Song Sun*

Volume 17, Issue 5, 2021

Published on: 06 January, 2020

Page: [573 - 589] Pages: 17

DOI: 10.2174/1573411016666200106103712

Price: $65

Abstract

Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts.

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described.

Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation.

Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described.

Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.

Keywords: Activity, CdS, cocatalysts, hydrogen production, photocatalytic, water splitting.

Graphical Abstract
[1]
Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev., 2014, 43(22), 7787-7812.
[http://dx.doi.org/10.1039/C3CS60425J] [PMID: 24429542]
[2]
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 2014, 43(22), 7520-7535.
[http://dx.doi.org/10.1039/C3CS60378D] [PMID: 24413305]
[3]
Zhang, P.; Wang, T.; Gong, J. Mechanistic Understanding of the plasmonic enhancement for solar water splitting. Adv. Mater., 2015, 27(36), 5328-5342.
[http://dx.doi.org/10.1002/adma.201500888] [PMID: 26265309]
[4]
Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525), 96-99.
[http://dx.doi.org/10.1038/nature13829] [PMID: 25363773]
[5]
Gao, W.; Lee, H.K.; Hobley, J.; Liu, T.; Phang, I.Y.; Ling, X.Y. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. Angew. Chem. Int. Ed. Engl., 2015, 54(13), 3993-3996.
[http://dx.doi.org/10.1002/anie.201412103] [PMID: 25650763]
[6]
Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater., 2013, 25(28), 3820-3839.
[http://dx.doi.org/10.1002/adma.201301207] [PMID: 23813606]
[7]
Dutta, S. Hydrogen as Sustainable and Green Energy Resource; Kirk‐Othmer Encyclopedia of Chemical Technology, 2018, pp. 1-23.
[http://dx.doi.org/10.1002/0471238961.0825041802091212.a01.pub3]
[8]
Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Dual Cocatalysts in TiO2 Photocatalysis. Adv. Mater., 2019, 31(30), e1807660.
[http://dx.doi.org/10.1002/adma.201807660] [PMID: 31148244]
[9]
Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev., 2019, 48(7), 2109-2125.
[http://dx.doi.org/10.1039/C8CS00542G] [PMID: 30328438]
[10]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[11]
Kochevar, I.; Pathak, M.; Parrish, J. A. Photophysics, photochemistry, and photobiology, 1999, p 220-229.
[12]
Cho, S.; Lee, M.J.; Kim, M.S.; Lee, S.; Kim, Y.K.; Lee, D.H.; Lee, C.W.; Cho, K.H.; Chung, J.H. Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J. Dermatol. Sci., 2008, 50(2), 123-133.
[http://dx.doi.org/10.1016/j.jdermsci.2007.11.009] [PMID: 18194849]
[13]
Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Nørskov, J.K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc., 2005, 127(15), 5308-5309.
[http://dx.doi.org/10.1021/ja0504690] [PMID: 15826154]
[14]
Wang, T.; Zhuang, J.; Lynch, J.; Chen, O.; Wang, Z.; Wang, X.; LaMontagne, D.; Wu, H.; Wang, Z.; Cao, Y.C. Self-assembled colloidal superparticles from nanorods. Science, 2012, 338(6105), 358-363.
[http://dx.doi.org/10.1126/science.1224221] [PMID: 23087242]
[15]
Simon, T.; Bouchonville, N.; Berr, M.J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A.S.; Rogach, A.L.; Jäckel, F.; Stolarczyk, J.K.; Feldmann, J. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater., 2014, 13(11), 1013-1018.
[http://dx.doi.org/10.1038/nmat4049] [PMID: 25087066]
[16]
Wolff, C.M.; Frischmann, P.D.; Schulze, M.; Bohn, B.J.; Wein, R.; Livadas, P.; Carlson, M.T.; Jäckel, F.; Feldmann, J.; Würthner, F.; Stolarczyk, J.K. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy, 2018, 3(10), 862-869.
[http://dx.doi.org/10.1038/s41560-018-0229-6]
[17]
Wang, Q.; Nakabayashi, M.; Hisatomi, T.; Sun, S.; Akiyama, S.; Wang, Z.; Pan, Z.; Xiao, X.; Watanabe, T.; Yamada, T.; Shibata, N.; Takata, T.; Domen, K. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater., 2019, 18(8), 827-832.
[http://dx.doi.org/10.1038/s41563-019-0399-z] [PMID: 31209390]
[18]
Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. CdS/Graphene Nanocomposite Photocatalysts. Adv. Energy Mater., 2015, 5(14), 1500010.
[http://dx.doi.org/10.1002/aenm.201500010]
[19]
Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Grätzel, M. Cleavage of water by visible-light irradiation of colloidal CdS Solutions; Inhibition of photocorrosion by RuO2. Angew. Chem. Int. Ed. Engl., 1981, 20(11), 987-988.
[http://dx.doi.org/10.1002/anie.198109871]
[20]
Bao, N.; Shen, L.; Takata, T.; Domen, K. Self-Templated Synthesis of Nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater., 2008, 20(1), 110-117.
[http://dx.doi.org/10.1021/cm7029344]
[21]
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38(1), 253-278.
[http://dx.doi.org/10.1039/B800489G] [PMID: 19088977]
[22]
Xiang, Q.; Cheng, B.; Yu, J. Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl. Catal. B, 2013, 138-139, 299-303.
[http://dx.doi.org/10.1016/j.apcatb.2013.03.005]
[23]
Shi, R.; Ye, H.F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y.; Lin, Z.; Fu, W.F.; Che, C.M.; Chen, Y. Interstitial P-Doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv. Mater., 2018, 30(6), 1705941.
[http://dx.doi.org/10.1002/adma.201705941] [PMID: 29280205]
[24]
Ai, Z.; Zhao, G.; Zhong, Y.; Shao, Y.; Huang, B.; Wu, Y.; Hao, X. Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation. Appl. Catal. B, 2018, 221, 179-186.
[http://dx.doi.org/10.1016/j.apcatb.2017.09.002]
[25]
Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res., 2013, 46(8), 1900-1909.
[http://dx.doi.org/10.1021/ar300227e] [PMID: 23530781]
[26]
Yoshida, M.; Yamakata, A.; Takanabe, K.; Kubota, J.; Osawa, M.; Domen, K. ATR-SEIRAS investigation of the Fermi level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation. J. Am. Chem. Soc., 2009, 131(37), 13218-13219.
[http://dx.doi.org/10.1021/ja904991p] [PMID: 19715313]
[27]
Jiang, W.; Bai, S.; Wang, L.; Wang, X.; Yang, L.; Li, Y.; Liu, D.; Wang, X.; Li, Z.; Jiang, J.; Xiong, Y. Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 nanosheets for visible-near-infrared photocatalytic hydrogen evolution. Small, 2016, 12(12), 1640-1648.
[http://dx.doi.org/10.1002/smll.201503552] [PMID: 26833931]
[28]
Maeda, K.; Xiong, A.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D.; Kanehara, M.; Setoyama, T.; Teranishi, T.; Domen, K. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem. Int. Ed. Engl., 2010, 49(24), 4096-4099.
[http://dx.doi.org/10.1002/anie.201001259] [PMID: 20425879]
[29]
Li, Y.; Hu, Y.; Peng, S.; Lu, G.; Li, S. Synthesis of CdS Nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C, 2009, 113(21), 9352-9358.
[http://dx.doi.org/10.1021/jp901505j]
[30]
Li, Y.; Tang, L.; Peng, S.; Li, Z.; Lu, G. Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution. CrystEngComm, 2012, 14(20), 6974.
[http://dx.doi.org/10.1039/c2ce25838b]
[31]
Jin, J.; Yu, J.; Liu, G.; Wong, P.K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(36), 10927.
[http://dx.doi.org/10.1039/c3ta12301d]
[32]
Wang, Y.; Wang, Y.; Xu, R. Photochemical deposition of Pt on CdS for H2 evolution from water: markedly enhanced activity by Controlling Pt reduction environment. J. Phys. Chem. C, 2013, 117(2), 783-790.
[http://dx.doi.org/10.1021/jp309603c]
[33]
Zhang, L.; Fu, X.; Meng, S.; Jiang, X.; Wang, J.; Chen, S. Ultra-low content of Pt modified CdS nanorods: one-pot synthesis and high photocatalytic activity for H2 production under visible light. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(47), 23732-23742.
[http://dx.doi.org/10.1039/C5TA07459B]
[34]
Mao, L.; Ba, Q.; Liu, S.; Jia, X.; Liu, H.; Chen, W.; Li, X. Pt–Nix alloy nanoparticles: A new strategy for cocatalyst design on a CdS surface for photo-catalytic hydrogen generation. RSC Advances, 2018, 8(55), 31529-31537.
[http://dx.doi.org/10.1039/C8RA06581K]
[35]
Yao, W.; Huang, C.; Muradov, N. T-Raissi, A., A novel Pd–Cr2O3/CdS photocatalyst for solar hydrogen production using a regenerable sacrificial donor. Int. J. Hydrogen Energy, 2011, 36(8), 4710-4715.
[http://dx.doi.org/10.1016/j.ijhydene.2010.12.124]
[36]
Chen, W.; Wang, Y.; Liu, M.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci., 2018, 444, 485-490.
[http://dx.doi.org/10.1016/j.apsusc.2018.03.068]
[37]
Wang, H.; Chen, W.; Zhang, J.; Huang, C.; Mao, L. Nickel nanoparticles modified CdS-A potential photocatalyst for hydrogen production through water splitting under visible light irradiation. Int. J. Hydrogen Energy, 2015, 40(1), 340-345.
[http://dx.doi.org/10.1016/j.ijhydene.2014.11.005]
[38]
Wang, Q.; Li, J.; Bai, Y.; Lian, J.; Huang, H.; Li, Z.; Lei, Z.; Shangguan, W. Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation. Green Chem., 2014, 16(5), 2728-2735.
[http://dx.doi.org/10.1039/C3GC42466A]
[39]
Wang, B.; He, S.; Feng, W.; Zhang, L.; Huang, X.; Wang, K.; Zhang, S.; Liu, P. Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B, 2018, 236, 233-239.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.005]
[40]
Wang, B.; He, S.; Zhang, L.; Huang, X.; Gao, F.; Feng, W.; Liu, P. CdS nanorods decorated with inexpensive NiCd bimetallic nanoparticles as efficient photocatalysts for visible-light-driven photocatalytic hydrogen evolution. Appl. Catal. B, 2019, 243, 229-235.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.065]
[41]
Yang, L.; Zeng, L.; Liu, H.; Deng, Y.; Zhou, Z.; Yu, J.; Liu, H.; Zhou, W. Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Appl. Catal. B, 2019, 249, 98-105.
[http://dx.doi.org/10.1016/j.apcatb.2019.02.062]
[42]
Zhou, X.; Huang, J.; Zhang, H.; Sun, H.; Tu, W. Controlled synthesis of CdS nanoparticles and their surface loading with MoS2 for hydrogen evolution under visible light. Int. J. Hydrogen Energy, 2016, 41(33), 14758-14767.
[http://dx.doi.org/10.1016/j.ijhydene.2016.06.190]
[43]
Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. J. Am. Chem. Soc., 2008, 130(23), 7176-7177.
[http://dx.doi.org/10.1021/ja8007825] [PMID: 18473462]
[44]
Yang, M.; Han, C.; Xu, Y. Insight into the effect of highly dispersed MoS2 versus layer-structured MoS2 on the photocorrosion and photoactivity of CdS in graphene-CdS-MoS2 composites. J. Phys. Chem. C, 2015, 119(49), 27234-27246.
[http://dx.doi.org/10.1021/acs.jpcc.5b08016]
[45]
Li, X.; Lv, X.; Li, N.; Wu, J.; Zheng, Y.; Tao, X. One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution. Appl. Catal. B, 2019, 243, 76-85.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.033]
[46]
Xiong, J.; Liu, Y.; Wang, D.; Liang, S.; Wu, W.; Wu, L. An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystal. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(24), 12631-12635.
[http://dx.doi.org/10.1039/C5TA02438B]
[47]
Xu, M.; Tang, X.; Wang, Y.; Liu, F.; Zhang, Y.; Li, K. Phosphorus-doped molybdenum disulfide facilitating the photocatalytic hydrogen production activity of CdS nanorod. New J. Chem., 2019, 43(14), 5335-5340.
[http://dx.doi.org/10.1039/C9NJ00411D]
[48]
Lei, Y.; Hou, J.; Wang, F.; Ma, X.; Jin, Z.; Xu, J.; Min, S. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route. Appl. Surf. Sci., 2017, 420, 456-464.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.165]
[49]
Liu, W.; Wang, X.; Yu, H.; Yu, J. Direct photoinduced synthesis of amorphous CoMoSx cocatalyst and its improved photocatalytic H2-evolution activity of CdS. ACS Sustain. Chem.& Eng., 2018, 6(9), 12436-12445.
[http://dx.doi.org/10.1021/acssuschemeng.8b02971]
[50]
Zong, X.; Han, J.; Ma, G.; Yan, H.; Wu, G.; Li, C.; Photocatalytic, H. 2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C, 2011, 115(24), 12202-12208.
[http://dx.doi.org/10.1021/jp2006777]
[51]
Zhang, W.; Xu, R. Surface engineered active photocatalysts without noble metals: CuS-ZnxCd1−xS nanospheres by one-step synthesis. Int. J. Hydrogen Energy, 2009, 34(20), 8495-8503.
[http://dx.doi.org/10.1016/j.ijhydene.2009.08.041]
[52]
Zhang, L.; Xie, F.; Wang, J.; Li, S.; Wang, L.; Chen, P.; Lu, C. Noble-metal-free CuS/CdS composites for photocatalytic H2 evolution and its photogenerated charge transfer properties. Int. J. Hydrogen Energy, 2013, 38(27), 11811-11817.
[http://dx.doi.org/10.1016/j.ijhydene.2013.06.115]
[53]
Zhang, W.; Wang, Y.; Wang, Z.; Zhong, Z.; Xu, R. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. (Camb.), 2010, 46(40), 7631-7633.
[http://dx.doi.org/10.1039/c0cc01562h] [PMID: 20848040]
[54]
Yuan, J.; Wen, J.; Zhong, Y.; Li, X.; Fang, Y.; Zhang, S.; Liu, W. Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(35), 18244-18255.
[http://dx.doi.org/10.1039/C5TA04573H]
[55]
Sun, Z.; Zheng, H.; Li, J.; Du, P. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci., 2015, 8(9), 2668-2676.
[http://dx.doi.org/10.1039/C5EE01310K]
[56]
Yue, Q.; Wan, Y.; Sun, Z.; Wu, X.; Yuan, Y.; Du, P. MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(33), 16941-16947.
[http://dx.doi.org/10.1039/C5TA03949E]
[57]
Zhao, D.; Sun, B.; Li, X.; Qin, L.; Kang, S.; Wang, D. Promoting visible light-driven hydrogen evolution over CdS nanorods using earth-abundant CoP as a cocatalyst. RSC Advances, 2016, 6(39), 33120-33125.
[http://dx.doi.org/10.1039/C6RA04612F]
[58]
Dong, Y.; Kong, L.; Wang, G.; Jiang, P.; Zhao, N.; Zhang, H. Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Appl. Catal. B, 2017, 211, 245-251.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.076]
[59]
Chao, Y.; Zheng, J.; Zhang, H.; Li, F.; Yan, F.; Tan, Y.; Zhu, Z. Oxygen-incorporation in Co2P as a non-noble metal cocatalyst to enhance photocatalysis for reducing water to H2 under visible light. Chem. Eng. J., 2018, 346, 281-288.
[http://dx.doi.org/10.1016/j.cej.2018.04.025]
[60]
Song, L.; Li, T.; Zhang, S.; Zhang, S. Synthesis of rhodium phosphide cocatalyst and remarkably enhanced photocatalytic hydrogen evolution over CdS under visible light radiation. Chem. Eng. J., 2017, 314, 498-507.
[http://dx.doi.org/10.1016/j.cej.2016.12.007]
[61]
Song, L.; Zhang, S. RuP2/CdS photocatalysts for enhanced hydrogen evolution in water spitting and mechanism of enhancement. Powder Technol., 2018, 339, 479-486.
[http://dx.doi.org/10.1016/j.powtec.2018.06.042]
[62]
Chen, X.; Chen, W.; Lin, P.; Yang, Y.; Gao, H.; Yuan, J.; Shangguan, W. In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun., 2013, 36, 104-108.
[http://dx.doi.org/10.1016/j.catcom.2013.03.016]
[63]
Zhang, H.; Zhang, P.; Qiu, M.; Dong, J.; Zhang, Y.; Lou, X.W.D. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv. Mater., 2019, 31(6), e1804883.
[PMID: 30556181]
[64]
Ran, J.; Yu, J.; Jaroniec, M. Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem., 2011, 13(10), 2708.
[http://dx.doi.org/10.1039/c1gc15465f]
[65]
Mao, L.; Ba, Q.; Jia, X.; Liu, S.; Liu, H.; Zhang, J.; Li, X.; Chen, W. Ultrathin Ni(OH)2 nanosheets: a new strategy for cocatalyst design on CdS surfaces for photocatalytic hydrogen generation. RSC Advances, 2019, 9(3), 1260-1269.
[http://dx.doi.org/10.1039/C8RA07307D]
[66]
Chen, X.; Chen, S.; Lin, C.; Jiang, Z.; Shangguan, W. Nickels/CdS photocatalyst prepared by flowerlike Ni/Ni(OH)2 precursor for efficiently photocatalytic H2 evolution. Int. J. Hydrogen Energy, 2015, 40(2), 998-1004.
[http://dx.doi.org/10.1016/j.ijhydene.2014.11.058]
[67]
Zhuang, H.; Cai, Z.; Xu, W.; Zhang, X.; Huang, M.; Wang, X. Constructing 1D CdS nanorod composites with high photocatalytic hydrogen production by introducing the Ni-based cocatalysts. Catal. Commun., 2019, 120, 51-54.
[http://dx.doi.org/10.1016/j.catcom.2018.11.010]
[68]
Zhang, L.J.; Zheng, R.; Li, S.; Liu, B.K. Wang de, J.; Wang, L. L.; Xie, T.F. Enhanced photocatalytic H2 generation on cadmium sulfide nanorods with cobalt hydroxide as cocatalyst and insights into their photogenerated charge transfer properties. ACS Appl. Mater. Interfaces, 2014, 6(16), 13406-13412.
[http://dx.doi.org/10.1021/am501216b] [PMID: 25105856]
[69]
Chen, H.; Jiang, D.; Sun, Z.; Irfan, R.M.; Zhang, L.; Du, P. Cobalt nitride as an efficient cocatalyst on CdS nanorods for enhanced photocatalytic hydrogen production in water. Catal. Sci. Technol., 2017, 7(7), 1515-1522.
[http://dx.doi.org/10.1039/C7CY00046D]
[70]
Li, L.; Deng, Z.; Yu, L.; Lin, Z.; Wang, W.; Yang, G. Amorphous transitional metal borides as substitutes for Pt cocatalysts for photocatalytic water splitting. Nano Energy, 2016, 27, 103-113.
[http://dx.doi.org/10.1016/j.nanoen.2016.06.054]
[71]
Jang, S.; Ham, J.; Lakshminarasimhan, N.; Choi, Y.; Lee, S. Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl. Catal. A Gen., 2008, 346(1), 149-154.
[http://dx.doi.org/10.1016/j.apcata.2008.05.020]
[72]
Chen, H.; Sun, Z.; Ye, S.; Lu, D.; Du, P. Molecular cobalt–salen complexes as novel cocatalysts for highly efficient photocatalytic hydrogen production over a CdS nanorod photosensitizer under visible light. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(30), 15729-15737.
[http://dx.doi.org/10.1039/C5TA03515E]
[73]
Han, W.; Chen, L.; Song, W.; Wang, S.; Fan, X.; Li, Y.; Zhang, F.; Zhang, G.; Peng, W. Synthesis of nitrogen and sulfur co-doped reduced graphene oxide as efficient metal-free cocatalyst for the photo-activity enhancement of CdS. Appl. Catal. B, 2018, 236, 212-221.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.021]
[74]
Zhu, C.; Liu, C.a.; Fu, Y.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B, 2019, 242, 178-185.
[http://dx.doi.org/10.1016/j.apcatb.2018.09.096]
[75]
Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal., 2009, 266(2), 165-168.
[http://dx.doi.org/10.1016/j.jcat.2009.06.024]
[76]
Xie, Y.P.; Zheng, Y.; Yang, Y.; Jiang, R.; Wang, G.; Zhang, Y.; Zhang, E.; Zhao, L.; Duan, C.Y. Two-dimensional nickel hydroxide/sulfides nanosheet as an efficient cocatalyst for photocatalytic H2 evolution over CdS nanospheres. J. Colloid Interface Sci., 2018, 514, 634-641.
[http://dx.doi.org/10.1016/j.jcis.2017.12.080] [PMID: 29310092]
[77]
Yin, M.; Zhang, W.; Qiao, F.; Sun, J.; Fan, Y.; Li, Z. Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. J. Solid State Chem., 2019, 270, 531-538.
[http://dx.doi.org/10.1016/j.jssc.2018.12.022]
[78]
Wei, B.; Huang, L.; Gu, H.; Wang, Z.; Zeng, L.; Chen, Y.; Liu, Q. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B, 2018, 231, 101-107.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.014]
[79]
Wu, T.; Wang, P.; Ao, Y.; Wang, C. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst. J. Colloid Interface Sci., 2018, 525, 107-114.
[http://dx.doi.org/10.1016/j.jcis.2018.04.068] [PMID: 29689414]
[80]
Liu, M.; Li, F.; Sun, Z.; Ma, L.; Xu, L.; Wang, Y. Noble-metal-free photocatalysts MoS2-graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution. Chem. Commun. (Camb.), 2014, 50(75), 11004-11007.
[http://dx.doi.org/10.1039/C4CC04653F] [PMID: 25096946]
[81]
Yin, L.; Li, L.; Li, C.; Dou, M. One-pot synthesis of CdS-MoS2/RGO-E nano-heterostructure with well-defined interfaces for efficient photocatalytic H2 evolution. Int. J. Hydrogen Energy, 2018, 43(45), 20382-20391.
[http://dx.doi.org/10.1016/j.ijhydene.2018.09.047]
[82]
Ning, X.; Li, J.; Yang, B.; Zhen, W.; Li, Z.; Tian, B.; Lu, G. Inhibition of photocorrosion of CdS via assembling with thin film TiO2 and removing formed oxygen by artificial gill for visible light overall water splitting. Appl. Catal. B, 2017, 212, 129-139.
[http://dx.doi.org/10.1016/j.apcatb.2017.04.074]
[83]
Pan, L.; Wang, S.; Mi, W.; Song, J.; Zou, J.; Wang, L.; Zhang, X. Undoped ZnO abundant with metal vacancies. Nano Energy, 2014, 9, 71-79.
[http://dx.doi.org/10.1016/j.nanoen.2014.06.029]
[84]
Ba, Q.; Jia, X.; Huang, L.; Li, X.; Chen, W.; Mao, L. Alloyed Pd Ni hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production. Int. J. Hydrogen Energy, 2019, 44(12), 5872-5880.
[http://dx.doi.org/10.1016/j.ijhydene.2019.01.054]
[85]
Wang, B.; Feng, W.; Zhang, L.; Zhang, Y.; Huang, X.; Fang, Z.; Liu, P. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B, 2017, 206, 510-519.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.047]
[86]
Han, B.; Liu, S.; Zhang, N.; Xu, Y.; Tang, Z. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl. Catal. B, 2017, 202, 298-304.
[http://dx.doi.org/10.1016/j.apcatb.2016.09.023]
[87]
Chen, S.; Chen, X.; Jiang, Q.; Yuan, J.; Lin, C.; Shangguan, W. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution. Appl. Surf. Sci., 2014, 316, 590-594.
[http://dx.doi.org/10.1016/j.apsusc.2014.08.053]
[88]
Cao, S.; Wang, J.; Lv, J.; Chen, Y.; Fu, F. A highly efficient photocatalytic H2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Appl. Catal. B, 2015, 162, 381-391.
[http://dx.doi.org/10.1016/j.apcatb.2014.07.014]
[89]
Ji, J.; Guo, L.; Li, Q.; Wang, F.; Li, Z.; Liu, J.; Jia, Y. A bifunctional catalyst for hydrogen evolution reaction: The interactive influences between CdS and MoS2 on photoelectrochemical activity. Int. J. Hydrogen Energy, 2015, 40(10), 3813-3821.
[http://dx.doi.org/10.1016/j.ijhydene.2015.01.075]
[90]
Liu, Y.; Yu, H.; Quan, X.; Chen, S. green synthesis of feather-shaped MoS2/CdS photocatalyst for effective hydrogen production. J. Photoenergy., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/247516]
[91]
Min, Y.; He, G.; Xu, Q.; Chen, Y. Dual-functional MoS2 sheet-modified CdS branch-like heterostructures with enhanced photostability and photocatalytic activity. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(8), 2578.
[http://dx.doi.org/10.1039/c3ta14240j]
[92]
Zhang, W.; Li, H.; Qiao, Q.; Hou, D.; Li, S. One-pot hydrothermal synthesis of willow branch-shaped MoS2/CdS heterojunctions for photocatalytic H2 production under visible light irradiation. Chin. J. Catal., 2019, 40(3), 371-379.
[http://dx.doi.org/10.1016/S1872-2067(18)63178-X]
[93]
Wang, P.; Lu, Y.; Wang, X.; Yu, H. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2. Appl. Surf. Sci., 2017, 391, 259-266.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.108]
[94]
Sun, Z.; Liu, X.; Yue, Q.; Jia, H.; Du, P. Cadmium sulfide nanorods decorated with copper sulfide via one-step cation exchange approach for enhanced photocatalytic hydrogen evolution under visible light. ChemCatChem, 2016, 8(1), 157-162.
[http://dx.doi.org/10.1002/cctc.201500789]
[95]
Zhen, W.; Ning, X.; Yang, B.; Wu, Y.; Li, Z.; Lu, G. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B, 2018, 221, 243-257.
[http://dx.doi.org/10.1016/j.apcatb.2017.09.024]
[96]
Borgarello, E.; Kalyanasundaram, K.; Grätzel, M.; Pelizzetti, E. Visible light induced generation of hydrogen from h2s in cds-dispersions, hole transfer catalysis by RuO2. Helv. Chim. Acta, 1982, 65(1), 243-248.
[http://dx.doi.org/10.1002/hlca.19820650123]
[97]
Navarro, M.; del Valle, F.; Fierro, G. Photocatalytic hydrogen evolution from CdS-ZnO-CdO systems under visible light irradiation: Effect of thermal treatment and presence of Pt and Ru cocatalysts. Int. J. Hydrogen Energy, 2008, 33(16), 4265-4273.
[http://dx.doi.org/10.1016/j.ijhydene.2008.05.048]
[98]
Oosawa, Y. Photocatalytic hydrogen evolution from an queous methanol solution over ceramics-electrocatalysts/TiO2. Chem. Lett., 1983, 12(4), 577-580.
[http://dx.doi.org/10.1246/cl.1983.577]
[99]
Irfan, R.M.; Jiang, D.; Sun, Z.; Lu, D.; Du, P. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light. Dalton Trans., 2016, 45(32), 12897-12905.
[http://dx.doi.org/10.1039/C6DT02148D] [PMID: 27476445]
[100]
Yang, J.; Yan, H.; Wang, X.; Wen, F.; Wang, Z.; Fan, D.; Shi, J.; Li, C. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J. Catal., 2012, 290, 151-157.
[http://dx.doi.org/10.1016/j.jcat.2012.03.008]
[101]
Wang, Q.; Li, J.; An, N.; Bai, Y.; Lu, X.; Li, J.; Ma, H.; Wang, R.; Wang, F.; Lei, Z.; Shangguan, W. Preparation of a novel recyclable cocatalyst wool-Pd for enhancement of photocatalytic H2 evolution on CdS. Int. J. Hydrogen Energy, 2013, 38(25), 10761-10767.
[http://dx.doi.org/10.1016/j.ijhydene.2013.02.045]
[102]
Ma, D.; Shi, W.; Zou, Y.; Fan, Z.; Ji, X.; Niu, C.; Wang, L. Rational design of CdS@ZnO core-shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. Nano Energy, 2017, 39, 183-191.
[http://dx.doi.org/10.1016/j.nanoen.2017.06.047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy