Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and 4D-QSAR Studies of Alanine Hydroxamic Acid Derivatives as Aminopeptidase N Inhibitors

Author(s): Min Gao, QiaoLi Lv, HouPan Zhang and GuoGang Tu*

Volume 17, Issue 6, 2021

Published on: 27 December, 2019

Page: [658 - 666] Pages: 9

DOI: 10.2174/1573406416666191227115451

Price: $65

Abstract

Background: As a target for anticancer treatment, aminopeptidase N (APN) shows its overexpression on diverse malignant tumor cells and associates with cancer invasion, angiogenesis and metastasis.

Objective: The objective of the study was the design, synthesis and biological activity evaluation of alanine hydroxamic acid derivatives as APN inhibitors, and investigation of the binding mode of inhibitors in the APN active site.

Methods: Alanine hydroxamic acid derivatives were synthesized and evaluated for their in vitro anti-cancer activity using CCK-8 assay. Molecular docking and 4D-QSAR studies were carried out to suggest the mechanism of biological activity.

Results: Compared with Bestatin, compound 9b showed the best APN inhibition activity. The putative binding mode of 9b in the APN active site was also discussed. Moreover, the robust and reliable 4D-QSAR model exhibited the following statistics: R2 = 0.9352, q2 LOO = 0.8484, q2 LNO =0.7920, R2 Pred = 0.8739.

Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of the current scaffold would be beneficial.

Keywords: Aminopeptidase N, inhibitor, 4D-QSAR, synthesis, docking, anticancer.

Graphical Abstract
[1]
Breljak, D.; Gabrilovac, J.; Boranic, M. Aminopeptidase N/CD13 and haematopoietic cells. Haema, 2003, 6, 453-461.
[2]
Piela-Smith, T.H.; Korn, J.H. Aminopeptidase N: a constitutive cell-surface protein on human dermal fibroblasts. Cell. Immunol., 1995, 162(1), 42-48.
[http://dx.doi.org/10.1006/cimm.1995.1049] [PMID: 7704909]
[3]
Dixon, J.; Kaklamanis, L.; Turley, H.; Hickson, I.D.; Leek, R.D.; Harris, A.L.; Gatter, K.C. Expression of aminopeptidase-n (CD 13) in normal tissues and malignant neoplasms of epithelial and lymphoid origin. J. Clin. Pathol., 1994, 47(1), 43-47.
[http://dx.doi.org/10.1136/jcp.47.1.43] [PMID: 7907609]
[4]
Stange, T.; Kettmann, U.; Holzhausen, H.J. Immunoelectron microscopic single and double labelling of aminopeptidase N (CD 13) and dipeptidyl peptidase IV (CD 26). Acta Histochem., 1996, 98(3), 323-331.
[http://dx.doi.org/10.1016/S0065-1281(96)80025-0] [PMID: 8863861]
[5]
Hooper, N.M. Families of zinc metalloproteases. FEBS Lett., 1994, 354(1), 1-6.
[http://dx.doi.org/10.1016/0014-5793(94)01079-X] [PMID: 7957888]
[6]
Inagaki, Y.; Tang, W.; Zhang, L.; Du, G.; Xu, W.; Kokudo, N. Novel aminopeptidase N (APN/CD13) inhibitor 24F can suppress invasion of hepatocellular carcinoma cells as well as angiogenesis. Biosci. Trends, 2010, 4(2), 56-60.
[PMID: 20448342]
[7]
Look, A.T.; Ashmun, R.A.; Shapiro, L.H.; Peiper, S.C. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest., 1989, 83(4), 1299-1307.
[http://dx.doi.org/10.1172/JCI114015] [PMID: 2564851]
[8]
Haraguchi, N.; Ishii, H.; Mimori, K.; Tanaka, F.; Ohkuma, M.; Kim, H.M.; Akita, H.; Takiuchi, D.; Hatano, H.; Nagano, H.; Barnard, G.F.; Doki, Y.; Mori, M. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest., 2010, 120(9), 3326-3339.
[http://dx.doi.org/10.1172/JCI42550] [PMID: 20697159]
[9]
Hashida, H.; Takabayashi, A.; Kanai, M.; Adachi, M.; Kondo, K.; Kohno, N.; Yamaoka, Y.; Miyake, M. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology, 2002, 122(2), 376-386.
[http://dx.doi.org/10.1053/gast.2002.31095] [PMID: 11832452]
[10]
Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.; Hamada, M.; Takeuchi, T. Probestin, a new inhibitor of aminopeptidase M, produced by Streptomyces azureus MH663-2F6. I. Taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiot. (Tokyo), 1990, 43(2), 143-148.
[http://dx.doi.org/10.7164/antibiotics.43.143] [PMID: 1968900]
[11]
Chung, M.C.; Lee, H.J.; Chun, H.K.; Lee, C.H.; Kim, S.I.; Kho, Y.H. Bestatin analogue from Streptomyces neyagawaensis SL-387. Biosci. Biotechnol. Biochem., 1996, 60(5), 898-900.
[http://dx.doi.org/10.1271/bbb.60.898] [PMID: 8704320]
[12]
Repic Lampret, B.; Kidric, J.; Kralj, B.; Vitale, L.; Pokorny, M.; Renko, M. Lapstatin, a new aminopeptidase inhibitor produced by Streptomyces rimosus, inhibits autogenous aminopeptidases. Arch. Microbiol., 1999, 171(6), 397-404.
[http://dx.doi.org/10.1007/s002030050726] [PMID: 10369895]
[13]
Addlagatta, A.; Gay, L.; Matthews, B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc. Natl. Acad. Sci. USA, 2006, 103(36), 13339-13344.
[http://dx.doi.org/10.1073/pnas.0606167103] [PMID: 16938892]
[14]
Ito, K.; Nakajima, Y.; Onohara, Y.; Takeo, M.; Nakashima, K.; Matsubara, F.; Ito, T.; Yoshimoto, T. Crystal structure of aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli and conformational change of methionine 260 involved in substrate recognition. J. Biol. Chem., 2006, 281(44), 33664-33676.
[http://dx.doi.org/10.1074/jbc.M605203200] [PMID: 16885166]
[15]
Onohara, Y.; Nakajima, Y.; Ito, K.; Xu, Y.; Nakashima, K.; Ito, T.; Yoshimoto, T. Crystallization and preliminary X-ray characterization of aminopeptidase N from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 7), 699-701.
[http://dx.doi.org/10.1107/S1744309106021567] [PMID: 16820698]
[16]
Xie, J.; Liu, J.; Liu, H.; Liang, S.; Lin, M.; Gu, Y.; Liu, T.; Wang, D.; Ge, H.; Mo, S.L. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm. Sin. B, 2015, 5(6), 554-563.
[http://dx.doi.org/10.1016/j.apsb.2015.07.008] [PMID: 26713270]
[17]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[18]
Gao, M.; He, J.; Xu, W.; Lai, X.; Liu, F.; Tu, G. Synthesis and molecular simulation study of furoic peptidomimetic derivatives as potent aminopeptodase N inhibitors. Pharmazie, 2018, 73(3), 123-127.
[PMID: 29544557]
[19]
Patil, R.; Sawant, S. Molecular dynamics guided receptor independent 4D QSAR studies of substituted coumarins as anticancer agents. Curr. Comput. Aided Drug Des., 2015, 11(1), 39-50.
[http://dx.doi.org/10.2174/1573409911666150617113933] [PMID: 26081557]
[20]
Zhang, H.P.; Lv, Q.L.; Xu, W.D.; Lai, X.P.; Liu, Y.; Tu, G.G. 4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR. Med. Chem. Res., 2019, 28, 498-504.
[http://dx.doi.org/10.1007/s00044-019-02303-x]
[21]
Hassinen, T.; Perakyla, M. New energy terms for reduced protein models implemented in an off-lattice force field. J. Comput. Chem., 2001, 22, 1229-1242.
[http://dx.doi.org/10.1002/jcc.1080]
[22]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. Qsarins: A new software for the development, analysis, and validation of qsar mlr models. J. Comput. Chem., 2013, 34, 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[23]
Tu, G.; Li, S.; Huang, H.; Li, G.; Xiong, F.; Mai, X.; Zhu, H.; Kuang, B.; Xu, W.F. Novel aminopeptidase N inhibitors derived from 1,3,4-thiadiazole scaffold. Bioorg. Med. Chem., 2008, 16(14), 6663-6668.
[http://dx.doi.org/10.1016/j.bmc.2008.05.081] [PMID: 18571419]
[24]
Gediya, L.K.; Chopra, P.; Purushottamachar, P.; Maheshwari, N.; Njar, V.C.O. A new simple and high-yield synthesis of suberoylanilide hydroxamic acid and its inhibitory effect alone or in combination with retinoids on proliferation of human prostate cancer cells. J. Med. Chem., 2005, 48(15), 5047-5051.
[http://dx.doi.org/10.1021/jm058214k] [PMID: 16033284]
[25]
Ezawa, K.; Minato, K.; Dobashi, K. Induction of apoptosis by ubenimex (Bestatin) in human non-small-cell lung cancer cell lines. Biomed. Pharmacother., 1996, 50(6-7), 283-289.
[http://dx.doi.org/10.1016/0753-3322(96)84827-X] [PMID: 8952869]
[26]
Mouritzen, C. European Lung Cancer Study Group. Bestatin as adjuvant treatment in operated stage I and stage II non-small cell lung cancer. Acta Oncol., 1990, 29(6), 817-820.
[http://dx.doi.org/10.3109/02841869009093007] [PMID: 2171596]
[27]
Socinski, M.A. Adjuvant therapy of resected non-small-cell lung cancer. Clin. Lung Cancer, 2004, 6(3), 162-169.
[http://dx.doi.org/10.3816/CLC.2004.n.029] [PMID: 15555217]
[28]
Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model., 2011, 51(9), 2320-2335.
[http://dx.doi.org/10.1021/ci200211n] [PMID: 21800825]
[29]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[30]
Ghasemi, J.B.; Safavi-Sohi, R.; Barbosa, E.G. 4D-LQTA-QSAR and docking study on potent Gram-negative specific LpxC inhibitors: a comparison to CoMFA modeling. Mol. Divers., 2012, 16(1), 203-213.
[http://dx.doi.org/10.1007/s11030-011-9340-3] [PMID: 22127637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy