Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis, Molecular Docking Studies and Antibacterial Activities of Novel Monocationic Indole-benzimidazole Derivatives

Author(s): Zeynep Ates-Alagoz*, Mehmet Murat Kisla, Hakan Goker and Sulhiye Yildiz

Volume 17, Issue 7, 2021

Published on: 20 April, 2020

Page: [699 - 706] Pages: 8

DOI: 10.2174/1573406416666200420080459

Price: $65

Abstract

Background: Finding efficient therapy against hospital-acquired MRSA infections has become rather important in the last decade. To this end, inhibition of the enzyme pyruvate kinase (PK) is being investigated for antibacterial activity, since this enzyme controls energy generation and metabolic flux distribution. Our main scaffold consists of benzimidazole and indole rings fused together. Both rings are famous for antibacterial properties and promising anti-MRSA compounds including indole ring.

Methods: Several 1-substituted-2-(1H-indol-3-yl)-N-substituted-1H-benzimidazole-5-carboxamidine analogues were developed, synthesized and their antibacterial activities were evaluated against Staphylococcus aureus (ATCC 25923), Methicillin resistant Staphylococcus aureus (MRSA) (ATCC 43300), and Staphylococcus epidermidis (ATCC 12228) by using tube dilution method. Molecular docking analysis with a characteristic protein called MRSA- Pyruvate Kinase has been conducted for the assessment of the activities of our compounds against Methicillinresistant S. aureus (MRSA).

Results: Among all the tested compounds, the most potent compound 36 had MIC values as 3.12, 3.12 and 6.25 μg/mL against S. aureus, Methicillin-resistant S. aureus (MRSA), and S. epidermidis, respectively. This compound had much better docking energy value than standard ampicillin and also created the link between two residues in different monomers of PK.

Discussion: This approach of using indol-amidine conjugate systems as anti-MRSA agents may include MRSA-PK as potential target. To further increase the affinity, some other H-bonding parts may be added. By doing so, another bridge with Ile361 residues on both sides can be created. Our compounds tend to violate log P limit of Lipinski, therefore some optimizations with formulation can be made.

Conclusion: This study mainly includes the design, synthesis and optimization of indolebenzimidazole- amidine derivatives. Docking studies confirmed our results, since our most potent hit compound 36 created the necessary interactions between two chains of MRSA-PK. Further optimization can be considered to increase drug ability.

Keywords: Synthesis, indoles, benzimidazolecarboxamides, antibacterial activities, molecular docking, pyruvate kinase.

Graphical Abstract
[1]
Neu, H.C. The crisis in antibiotic resistance. Science, 1992, 257(5073), 1064-1073.
[http://dx.doi.org/10.1126/science.257.5073.1064] [PMID: 1509257]
[2]
Lyon, B.R.; Skurray, R. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol. Rev., 1987, 51(1), 88-134.
[http://dx.doi.org/10.1128/MMBR.51.1.88-134.1987] [PMID: 3031442]
[3]
Barrett, F.F.; McGehee, R.F., Jr; Finland, M. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N. Engl. J. Med., 1968, 279(9), 441-448.
[http://dx.doi.org/10.1056/NEJM196808292790901] [PMID: 4232865]
[4]
Doshi, R.K.; Patel, G.; Mackay, R.; Wallach, F. Healthcareassociated Infections: epidemiology, prevention, and therapy. Mt. Sinai J. Med., 2009, 76(1), 84-94.
[http://dx.doi.org/10.1002/msj.20070] [PMID: 19170222]
[5]
Lovering, A.L.; Gretes, M.C.; Safadi, S.S.; Danel, F.; de Castro, L.; Page, M.G.; Strynadka, N.C. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem., 2012, 287(38), 32096-32102.
[http://dx.doi.org/10.1074/jbc.M112.355644] [PMID: 22815485]
[6]
Pathania, R.; Brown, E.D. Small and lethal: searching for new antibacterial compounds with novel modes of action. Biochem. Cell Biol., 2008, 86(2), 111-115.
[http://dx.doi.org/10.1139/O08-011] [PMID: 18443624]
[7]
Cherkasov, A.; Hsing, M.; Zoraghi, R.; Foster, L.J.; See, R.H.; Stoynov, N.; Jiang, J.; Kaur, S.; Lian, T.; Jackson, L.; Gong, H.; Swayze, R.; Amandoron, E.; Hormozdiari, F.; Dao, P.; Sahinalp, C.; Santos-Filho, O.; Axerio-Cilies, P.; Byler, K.; McMaster, W.R.; Brunham, R.C.; Finlay, B.B.; Reiner, N.E. Mapping the protein interaction network in methicillin-resistant Staphylococcus aureus. J. Proteome Res., 2011, 10(3), 1139-1150.
[http://dx.doi.org/10.1021/pr100918u] [PMID: 21166474]
[8]
Zoraghi, R.; See, R.H.; Gong, H.; Lian, T.; Swayze, R.; Finlay, B.B.; Brunham, R.C.; McMaster, W.R.; Reiner, N.E. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry, 2010, 49(35), 7733-7747.
[http://dx.doi.org/10.1021/bi100780t] [PMID: 20707314]
[9]
Fraser, H.B.; Hirsh, A.E.; Steinmetz, L.M.; Scharfe, C.; Feldman, M.W. Evolutionary rate in the protein interaction network. Science, 2002, 296(5568), 750-752.
[http://dx.doi.org/10.1126/science.1068696] [PMID: 11976460]
[10]
Zoraghi, R.; Worrall, L.; See, R.H.; Strangman, W.; Popplewell, W.L.; Gong, H.; Samaai, T.; Swayze, R.D.; Kaur, S.; Vuckovic, M.; Finlay, B.B.; Brunham, R.C.; McMaster, W.R.; Davies-Coleman, M.T.; Strynadka, N.C.; Andersen, R.J.; Reiner, N.E. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J. Biol. Chem., 2011, 286(52), 44716-44725.
[http://dx.doi.org/10.1074/jbc.M111.289033] [PMID: 22030393]
[11]
Valentini, G.; Chiarelli, L.; Fortin, R.; Speranza, M.L.; Galizzi, A.; Mattevi, A. The allosteric regulation of pyruvate kinase. J. Biol. Chem., 2000, 275(24), 18145-18152.
[http://dx.doi.org/10.1074/jbc.M001870200] [PMID: 10751408]
[12]
Muñoz, M.E.; Ponce, E. Pyruvate kinase: current status of regulatory and functional properties. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2003, 135(2), 197-218.
[http://dx.doi.org/10.1016/S1096-4959(03)00081-2] [PMID: 12798932]
[13]
Emmerling, M.; Bailey, J.E.; Sauer, U. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metab. Eng., 1999, 1(2), 117-127.
[http://dx.doi.org/10.1006/mben.1998.0109] [PMID: 10935925]
[14]
Fry, B.; Zhu, T.; Domach, M.M.; Koepsel, R.R.; Phalakornkule, C.; Ataai, M.M. Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Appl. Environ. Microbiol., 2000, 66(9), 4045-4049.
[http://dx.doi.org/10.1128/AEM.66.9.4045-4049.2000] [PMID: 10966427]
[15]
Al Zaid Siddiquee, K.; Arauzo-Bravo, M.J.; Shimizu, K. Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol., 2004, 63(4), 407-417.
[http://dx.doi.org/10.1007/s00253-003-1357-9] [PMID: 12802531]
[16]
Zhai, Z.; An, H.; Wang, G.; Luo, Y.; Hao, Y. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid. Sci. Rep., 2015, 5, 17024.
[http://dx.doi.org/10.1038/srep17024] [PMID: 26581248]
[17]
Ates-Alagöz, Z.; Alp, M.; Kuş, C.; Yildiz, S.; Buyukbingöl, E.; Göker, H. Synthesis and potent antimicrobial activities of some novel retinoidal monocationic benzimidazoles. Arch. Pharm. (Weinheim), 2006, 339(2), 74-80.
[http://dx.doi.org/10.1002/ardp.200500168] [PMID: 16470650]
[18]
Rida, S.M.; Soliman, F.S.G.; Badawy, E.S. Novel benzimidazoles with potential antimicrobial and antineoplastic activities. Pharmazie, 1986, 41(8), 563-565.
[PMID: 3786375]
[19]
Sinha, D.; Tiwari, A.K.; Singh, S.; Shukla, G.; Mishra, P.; Chandra, H.; Mishra, A.K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur. J. Med. Chem., 2008, 43(1), 160-165.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.022] [PMID: 17532543]
[20]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[21]
Schrödinger Release 2019-3Protein Preparation Wizard; Epik,Schrödinger, LLC: New York, NY, 2016. Impact, Schrödinger, LLC; Epik, Schrödinger, LLC: New York, NY, 2019.
[22]
Schrödinger Release 2019-3; Schrödinger, LLC: New York, NY, 2019.
[23]
Release, S. Schrödinger Release 2019-3; Schrödinger, LLC: New York, NY, 2019.
[24]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[25]
Schrödinger Release 2019-3; Glide Schrödinger, LLC: New York, NY, 2019.
[26]
Schrödinger, Release 2019-3; QikProp; Schrödinger, LLC: New York, NY, 2019.
[27]
Göker, H.; Özden, S.; Yildiz, S.; Boykin, D.W. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem., 2005, 40(10), 1062-1069.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.002] [PMID: 15992965]
[28]
Göker, H.; Kuş, C.; Boykin, D.W.; Yildiz, S.; Altanlar, N. Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species. Bioorg. Med. Chem., 2002, 10(8), 2589-2596.
[http://dx.doi.org/10.1016/S0968-0896(02)00103-7] [PMID: 12057648]
[29]
Göker, H.; Alp, M.; Yildiz, S. Synthesis and potent antimicrobial activity of some novel N-(alkyl)-2-phenyl-1H-benzimidazole-5-carboxamidines. Molecules, 2005, 10(11), 1377-1386.
[http://dx.doi.org/10.3390/10111377] [PMID: 18007533]
[30]
National Committee for Clinical Laboratory Standarts. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 5th ed; Wayne, PA, 2000.
[31]
Shadomy, S.; Pfaller, M.A. Laboratory Studies with Antifungal Agents: Tests and Quantitation in Body Fluids. In: Manual of Clinical Microbiology, 5th Ed; Balows, A.; Hausler, W.J.; Hermann, K.L.; Isenberg, H.D.; Shadomy, H.J., Eds.; , 1991; 117, p. 1173.
[32]
El Sayed, M.T.; Sabry, N.M.; Hamdy, N.A.; Voronkov, A.; Ogungbe, I.V.; Balakin, K.; Abdel-Aziz, M.S. Synthesis, Anti-Methicillin-resistant S. aureus (MRSA) Evaluation, Quantitative Structure-Activity Relationship and Molecular Modelling Studies of Some Novel Bis-indoles as Prospective MRSA Pyruvate Kinase Inhibitors. Lett. Drug Des. Discov., 2018, 15, 336-346.
[http://dx.doi.org/10.2174/1570180815666171213144922]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy