Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Current Insights of Inhibitors of p38 Mitogen-Activated Protein Kinase in Inflammation

Author(s): Archana Awasthi, Mantripragada Bhagavan Raju and Md. Azizur Rahman*

Volume 17, Issue 6, 2021

Published on: 27 February, 2020

Page: [555 - 575] Pages: 21

DOI: 10.2174/1573406416666200227122849

Price: $65

Abstract

Background: The inflammatory process is one of the mechanisms by which our body upholds us from pathogens such as parasites, bacteria, viruses, and other harmful microorganisms. Inflammatory stimuli activate many intracellular signaling pathways such as the nuclear factor-kB (NF-kB) pathway and three mitogen-activated protein kinase (MAPK) pathways, which are mediated through extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. The p38 has evolved as an enticing target in treating many persistent inflammatory diseases. Hence, designing novel p38 inhibitors targeting MAPK pathways has acquired significance.

Objective: Peruse to identify the lead target to discover novel p38MAPK inhibitors with different scaffolds having improved selectivity over the prototype drugs.

Methods: Structure and the binding sites of p38MAPK were focused. Various scaffolds designed for inhibition and the molecules which have entered the clinical trials are discussed.

Results: This review aspires to present the available information on the structure and the 3D binding sites of p38MAPK, various scaffolds designed for imidazole, urea, benzamide, azoles, quinoxaline, chromone, ketone as a potent p38MAPK inhibitors and their SAR studies and the molecules which have entered the clinical trials.

Conclusion: The development of successful selective p38MAPK inhibitors in inflammatory diseases is in progress despite all challenges. It was speculated that p38MAPK also plays an important role in treating diseases such as neuroinflammation, arterial inflammation, vascular inflammation, cancer and so on, which are posing the world with treatment challenges. In this review, clinical trials of drugs are discussed related to inflammatory and its related diseases. Research is in progress to design and develop novel p38MAPK inhibitors with minimal side effects.

Keywords: Inflammation, p38MAPK, P38MAPK signalling pathway, p38MAPK inhibitors, 3D binding sites of p38MAPK, ATP binding modes, p38MAPK, SAR of p38MAPK inhibitors, inhibitors in clinical trials.

Next »
Graphical Abstract
[1]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[PMID: 17223962]
[2]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[PMID: 29467962]
[3]
Eiró, N.; Vizoso, F.J. Inflammation and cancer. World J. Gastrointest. Surg., 2012, 4(3), 62-72.
[http://dx.doi.org/10.4240/wjgs.v4.i3.62] [PMID: 22530080]
[4]
Lee, Y.W.; Kim, P.H.; Lee, W.H.; Hirani, A.A. Interleukin4, oxidative stress, vascular inflammation and atherosclerosis. Biomol. Ther. (Seoul), 2010, 18(2), 135-144.
[http://dx.doi.org/10.4062/biomolther.2010.18.2.135] [PMID: 21072258]
[5]
Urrutia, P.; Aguirre, P.; Esparza, A.; Tapia, V.; Mena, N.P.; Arredondo, M.; González-Billault, C.; Núñez, M.T. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J. Neurochem., 2013, 126(4), 541-549.
[http://dx.doi.org/10.1111/jnc.12244] [PMID: 23506423]
[6]
Pockley, A.G. Heat shock proteins, inflammation, and cardiovascular disease. Circulation, 2002, 105(8), 1012-1017.
[http://dx.doi.org/10.1161/hc0802.103729] [PMID: 11864934]
[7]
Cohen, J. The immunopathogenesis of sepsis. Nature, 2002, 420(6917), 885-891.
[http://dx.doi.org/10.1038/nature01326] [PMID: 12490963]
[8]
Wyss-Coray, T.; Rogers, J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med., 2012, 2(1), a006346-a006346.
[http://dx.doi.org/10.1101/cshperspect.a006346] [PMID: 22315714]
[9]
Breyer, M.K.; Eric, P.A. Rutten.; Spruit, M.A.; Hop, W.C.J.; Postma, D.S.; Wouters, E.F.M. Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease: Results from the Cosmic Study. Open J. Respir. Dis., 2012, 2, 63-72.
[http://dx.doi.org/10.4236/ojrd.2012.23010]
[10]
Bagley, M.C.; Davis, T.; Murziani, P.G.S.; Widdowson, C.S.; Kipling, D. Use of p38 MAPK Inhibitors for the Treatment of Werner Syndrome. Pharmaceuticals (Basel), 2010, 3(6), 1842-1872.
[http://dx.doi.org/10.3390/ph3061842] [PMID: 27713332]
[11]
Oghumu, S.; Nori, U.; Bracewell, A.; Zhang, J.; Bott, C.; Nadasdy, G.M.; Brodsky, S.V.; Pelletier, R.; Satoskar, A.R.; Nadasdy, T.; Satoskar, A.A. Differential gene expression pattern in biopsies with renal allograft pyelonephritis and allograft rejection. Clin. Transplant., 2016, 30(9), 1115-1133.
[http://dx.doi.org/10.1111/ctr.12795] [PMID: 27352120]
[12]
Hou, X.; Yang, F.; Liu, W.; Fu, Z.; Chen, L.; Li, Z.; Ni, C.; Liu, M.; Cao, G. Signalling pathways that facilitate chronic inflammation-induced carcinogenesis. J Cell Signal., 2015, 1, 104.
[13]
Grant, S.K. Therapeutic protein kinase inhibitors. Cell. Mol. Life Sci., 2009, 66(7), 1163-1177.
[http://dx.doi.org/10.1007/s00018-008-8539-7] [PMID: 19011754]
[14]
Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res., 2005, 15(1), 11-18.
[http://dx.doi.org/10.1038/sj.cr.7290257] [PMID: 15686620]
[15]
Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26(22), 3279-3290.
[http://dx.doi.org/10.1038/sj.onc.1210421] [PMID: 17496922]
[16]
Schaeffer, H.J.; Weber, M.J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol., 1999, 19(4), 2435-2444.
[http://dx.doi.org/10.1128/MCB.19.4.2435] [PMID: 10082509]
[17]
Yu, T.; Yi, Y.S.; Yang, Y.; Oh, J.; Jeong, D.; Cho, J.Y. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm., 2012, 2012, 979105.
[http://dx.doi.org/10.1155/2012/979105] [PMID: 23304064]
[18]
Jeong, J.J.; Jang, S.E.; Joh, E.H.; Han, M.J.; Kim, D.H. Kalopanaxsaponin B ameliorates TNBS-induced colitis in mice. Biomol. Ther. (Seoul), 2012, 20(5), 457-462.
[http://dx.doi.org/10.4062/biomolther.2012.20.5.457] [PMID: 24009834]
[19]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta, 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010] [PMID: 17481747]
[20]
Cuadrado, A.; Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J., 2010, 429(3), 403-417.
[http://dx.doi.org/10.1042/BJ20100323] [PMID: 20626350]
[21]
Rouse, J.; Cohen, P.; Trigon, S.; Morange, M.; Alonso-Llamazares, A.; Zamanillo, D.; Hunt, T.; Nebreda, A.R. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell, 1994, 78(6), 1027-1037.
[http://dx.doi.org/10.1016/0092-8674(94)90277-1] [PMID: 7923353]
[22]
Meng, A.; Zhang, X.; Shi, Y. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Exp. Ther. Med., 2014, 8(6), 1772-1776.
[http://dx.doi.org/10.3892/etm.2014.2023] [PMID: 25371731]
[23]
Fang, C.; Wu, B.; Le, N.T.T.; Imberdis, T.; Mercer, R.C.C.; Harris, D.A. Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog., 2018, 14(9), e1007283.
[http://dx.doi.org/10.1371/journal.ppat.1007283] [PMID: 30235355]
[24]
Raingeaud, J.; Gupta, S.; Rogers, J.S.; Dickens, M.; Han, J.; Ulevitch, R.J.; Davis, R.J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem., 1995, 270(13), 7420-7426.
[http://dx.doi.org/10.1074/jbc.270.13.7420] [PMID: 7535770]
[25]
Saklatvala, J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol., 2004, 4(4), 372-377.
[http://dx.doi.org/10.1016/j.coph.2004.03.009] [PMID: 15251131]
[26]
Singh, R.K.; Najmi, A.K.; Dastidar, S.G. Biological functions and role of mitogen-activated protein kinase activated protein kinase 2 (MK2) in inflammatory diseases. Pharmacol. Rep., 2017, 69(4), 746-756.
[http://dx.doi.org/10.1016/j.pharep.2017.03.023] [PMID: 28582691]
[27]
Qi, M.; Elion, E.A. MAP kinase pathways. J. Cell Sci., 2005, 118(Pt 16), 3569-3572.
[http://dx.doi.org/10.1242/jcs.02470] [PMID: 16105880]
[28]
Humphreys, J.M.; Piala, A.T.; Akella, R.; He, H.; Goldsmith, E.J. Precisely ordered phosphorylation reactions in the p38 mitogen-activated protein (MAP) kinase cascade. J. Biol. Chem., 2013, 288(32), 23322-23330.
[http://dx.doi.org/10.1074/jbc.M113.462101] [PMID: 23744074]
[29]
Stramucci, L.; Pranteda, A.; Bossi, G. Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer. Cancers (Basel), 2018, 10(5), 131.
[http://dx.doi.org/10.3390/cancers10050131] [PMID: 29751559]
[30]
Alonso, G.; Ambrosino, C.; Jones, M.; Nebreda, A.R. Differential activation of p38 mitogen-activated protein kinase isoforms depending on signal strength. J. Biol. Chem., 2000, 275(51), 40641-40648.
[http://dx.doi.org/10.1074/jbc.M007835200] [PMID: 11010976]
[31]
Hayakawa, T.; Matsuzawa, A.; Noguchi, T.; Takeda, K.; Ichijo, H. The ASK1-MAP kinase pathways in immune and stress responses. Microbes Infect., 2006, 8(4), 1098-1107.
[http://dx.doi.org/10.1016/j.micinf.2005.12.001] [PMID: 16517200]
[32]
Karin, M.; Gallagher, E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev., 2009, 228(1), 225-240.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00755.x] [PMID: 19290931]
[33]
Wertz, I.E.; Dixit, V.M. Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ., 2010, 17(1), 14-24.
[http://dx.doi.org/10.1038/cdd.2009.168] [PMID: 19893571]
[34]
Ge, B.; Gram, H.; Di Padova, F.; Huang, B.; New, L.; Ulevitch, R.J.; Luo, Y.; Han, J. MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science, 2002, 295(5558), 1291-1294.
[http://dx.doi.org/10.1126/science.1067289] [PMID: 11847341]
[35]
Uhlik, M.T.; Abell, A.N.; Johnson, N.L.; Sun, W.; Cuevas, B.D.; Lobel-Rice, K.E.; Horne, E.A.; Dell’Acqua, M.L.; Johnson, G.L. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat. Cell Biol., 2003, 5(12), 1104-1110.
[http://dx.doi.org/10.1038/ncb1071] [PMID: 14634666]
[36]
Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83.
[http://dx.doi.org/10.1128/MMBR.00031-10] [PMID: 21372320]
[37]
Shemirani, B.; Crowe, D.L. Hypoxic induction of HIF-1alpha and VEGF expression in head and neck squamous cell carcinoma lines is mediated by stress activated protein kinases. Oral Oncol., 2002, 38(3), 251-257.
[http://dx.doi.org/10.1016/S1368-8375(01)00052-5] [PMID: 11978547]
[38]
Yoshizuka, N.; Chen, R.M.; Xu, Z.; Liao, R.; Hong, L.; Hu, W.Y.; Yu, G.; Han, J.; Chen, L.; Sun, P. A novel function of p38-regulated/activated kinase in endothelial cell migration and tumor angiogenesis. Mol. Cell. Biol., 2012, 32(3), 606-618.
[http://dx.doi.org/10.1128/MCB.06301-11] [PMID: 22124154]
[39]
Kidger, A.M.; Keyse, S.M. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin. Cell Dev. Biol., 2016, 50, 125-132.
[http://dx.doi.org/10.1016/j.semcdb.2016.01.009] [PMID: 26791049]
[40]
Owens, D.M.; Keyse, S.M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 2007, 26(22), 3203-3213.
[http://dx.doi.org/10.1038/sj.onc.1210412] [PMID: 17496916]
[41]
Takekawa, M.; Adachi, M.; Nakahata, A.; Nakayama, I.; Itoh, F.; Tsukuda, H.; Taya, Y.; Imai, K. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J., 2000, 19(23), 6517-6526.
[http://dx.doi.org/10.1093/emboj/19.23.6517] [PMID: 11101524]
[42]
Zakkar, M.; Chaudhury, H.; Sandvik, G.; Enesa, K.; Luong, A.; Cuhlmann, S.; Mason, J.C.; Krams, R.; Clark, A.R.; Haskard, D.O.; Evans, P.C. Increased endothelial mitogen-activated protein kinase phosphatase-1 expression suppresses proinflammatory activation at sites that are resistant to atherosclerosis. Circ. Res., 2008, 103(7), 726-732.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.183913] [PMID: 18723442]
[43]
Singh, R. Model predicts that MKP1 and TAB1 regulate p38alpha nuclear pulse and its basal activity through positive and negative feedback loops in response to IL-1. PLoS One, 2016, 11(6), e0157572.
[http://dx.doi.org/10.1371/journal.pone.0157572] [PMID: 27314954]
[44]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem., 1977, 80(2), 319-324.
[http://dx.doi.org/10.1111/j.1432-1033.1977.tb11885.x] [PMID: 923582]
[45]
Dawson, N.L.; Lewis, T.E.; Das, S.; Lees, J.G.; Lee, D.; Ashford, P.; Orengo, C.A.; Sillitoe, I. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res., 2017, 45(D1), D289-D295.
[http://dx.doi.org/10.1093/nar/gkw1098] [PMID: 27899584]
[46]
Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH--a hierarchic classification of protein domain structures. Structure, 1997, 5(8), 1093-1108.
[http://dx.doi.org/10.1016/S0969-2126(97)00260-8] [PMID: 9309224]
[47]
Yurtsever, Z.; Scheaffer, S.M.; Romero, A.G.; Holtzman, M.J.; Brett, T.J. The crystal structure of phosphorylated MAPK13 reveals common structural features and differences in p38 MAPK family activation. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 4), 790-799.
[http://dx.doi.org/10.1107/S1399004715001212] [PMID: 25849390]
[48]
Patel, S.B.; Cameron, P.M.; O’Keefe, S.J.; Frantz-Wattley, B.; Thompson, J.; O’Neill, E.A.; Tennis, T.; Liu, L.; Becker, J.W.; Scapin, G. The three-dimensional structure of MAP kinase p38β: different features of the ATP-binding site in p38β compared with p38α. Acta Crystallogr. D Biol. Crystallogr., 2009, 65(Pt 8), 777-785.
[http://dx.doi.org/10.1107/S090744490901600X] [PMID: 19622861]
[49]
Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 2004, 68(2), 320-344.
[http://dx.doi.org/10.1128/MMBR.68.2.320-344.2004] [PMID: 15187187]
[50]
Beenstock, J.; Ben-Yehuda, S.; Melamed, D.; Admon, A.; Livnah, O.; Ahn, N.G.; Engelberg, D. The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert. J. Biol. Chem., 2014, 289(34), 23546-23556.
[http://dx.doi.org/10.1074/jbc.M114.578237] [PMID: 25006254]
[51]
Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P.F.; Gilmore, T.; Graham, A.G.; Grob, P.M.; Hickey, E.R.; Moss, N.; Pav, S.; Regan, J. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol., 2002, 9(4), 268-272.
[http://dx.doi.org/10.1038/nsb770] [PMID: 11896401]
[52]
Soliva, R.; Gelpí, J.L.; Almansa, C.; Virgili, M.; Orozco, M. Dissection of the recognition properties of p38 MAP kinase. Determination of the binding mode of a new pyridinyl-heterocycle inhibitor family. J. Med. Chem., 2007, 50(2), 283-293.
[http://dx.doi.org/10.1021/jm061073h] [PMID: 17228870]
[53]
Fischer, S.; Wentsch, H.K.; Mayer-Wrangowski, S.C.; Zimmermann, M.; Bauer, S.M.; Storch, K.; Niess, R.; Koeberle, S.C.; Grütter, C.; Boeckler, F.M.; Rauh, D.; Laufer, S.A. Dibenzosuberones as p38 mitogen-activated protein kinase inhibitors with low ATP competitiveness and outstanding whole blood activity. J. Med. Chem., 2013, 56(1), 241-253.
[http://dx.doi.org/10.1021/jm301539x] [PMID: 23270382]
[54]
Azevedo, R.; van Zeeland, M.; Raaijmakers, H.; Kazemier, B.; de Vlieg, J.; Oubrie, A. X-ray structure of p38α bound to TAK-715: comparison with three classic inhibitors. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 8), 1041-1050.
[http://dx.doi.org/10.1107/S090744491201997X] [PMID: 22868770]
[55]
Angell, R.M.; Bamborough, P.; Cleasby, A.; Cockerill, S.G.; Jones, K.L.; Mooney, C.J.; Somers, D.O.; Walker, A.L. Biphenyl amide p38 kinase inhibitors 1: Discovery and binding mode. Bioorg. Med. Chem. Lett., 2008, 18(1), 318-323.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.076] [PMID: 18006306]
[56]
Simard, J.R.; Getlik, M.; Grtter, C.; Schneider, R.; Wulfert, S.; Rauh, D. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J. Am. Chem. Soc., 2010, 132, 4152-4160.
[http://dx.doi.org/10.1021/ja908083e] [PMID: 20201574]
[57]
Fitzgerald, C.E.; Patel, S.B.; Becker, J.W.; Cameron, P.M.; Zaller, D.; Pikounis, V.B.; O’Keefe, S.J.; Scapin, G. Structural basis for p38α MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Nat. Struct. Biol., 2003, 10(9), 764-769.
[http://dx.doi.org/10.1038/nsb949] [PMID: 12897767]
[58]
Hauser, D.R.; Scior, T.; Domeyer, D.M.; Kammerer, B.; Laufer, S.A. Synthesis, biological testing, and binding mode prediction of 6,9-diarylpurin-8-ones as p38 MAP kinase inhibitors. J. Med. Chem., 2007, 50(9), 2060-2066.
[http://dx.doi.org/10.1021/jm061061w] [PMID: 17411025]
[59]
Michelotti, E.L.; Moffett, K.K.; Nguyen, D.; Kelly, M.J.; Shetty, R.; Chai, X.; Northrop, K.; Namboodiri, V.; Campbell, B.; Flynn, G.A.; Fujimoto, T.; Hollinger, F.P.; Bukhtiyarova, M.; Springman, E.B.; Karpusas, M. Two classes of p38α MAP kinase inhibitors having a common diphenylether core but exhibiting divergent binding modes. Bioorg. Med. Chem. Lett., 2005, 15(23), 5274-5279.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.038] [PMID: 16169718]
[60]
Hari, S.B.; Merritt, E.A.; Maly, D.J. Sequence determinants of a specific inactive protein kinase conformation. Chem. Biol., 2013, 20(6), 806-815.
[http://dx.doi.org/10.1016/j.chembiol.2013.05.005] [PMID: 23790491]
[61]
Volkamer, A.; Eid, S.; Turk, S.; Rippmann, F.; Fulle, S. Identification and Visualization of Kinase-Specific Subpockets. J. Chem. Inf. Model., 2016, 56(2), 335-346.
[http://dx.doi.org/10.1021/acs.jcim.5b00627] [PMID: 26735903]
[62]
Lee, M.R.; Dominguez, C. MAP kinase p38 inhibitors: clinical results and an intimate look at their interactions with p38α protein. Curr. Med. Chem., 2005, 12(25), 2979-2994.
[http://dx.doi.org/10.2174/092986705774462914] [PMID: 16378500]
[63]
Gaestel, M.; Mengel, A.; Bothe, U.; Asadullah, K. Protein kinases as small molecule inhibitor targets in inflammation. Curr. Med. Chem., 2007, 14(21), 2214-2234.
[http://dx.doi.org/10.2174/092986707781696636] [PMID: 17896971]
[64]
Zhang, J.; Shen, B.; Lin, A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol. Sci., 2007, 28(6), 286-295.
[http://dx.doi.org/10.1016/j.tips.2007.04.008] [PMID: 17482683]
[65]
Laufer, S.A.; Hauser, D.R.; Domeyer, D.M.; Kinkel, K.; Liedtke, A.J. Design, synthesis, and biological evaluation of novel Tri- and tetrasubstituted imidazoles as highly potent and specific ATP-mimetic inhibitors of p38 MAP kinase: focus on optimized interactions with the enzyme’s surface-exposed front region. J. Med. Chem., 2008, 51(14), 4122-4149.
[http://dx.doi.org/10.1021/jm701529q] [PMID: 18578517]
[66]
Ziegler, K.; Hauser, D.R.J.; Unger, A.; Albrecht, W.; Laufer, S.A. 2-Acylaminopyridin-4-ylimidazoles as p38 MAP kinase inhibitors: Design, synthesis, and biological and metabolic evaluations. ChemMedChem, 2009, 4(11), 1939-1948.
[http://dx.doi.org/10.1002/cmdc.200900242] [PMID: 19731280]
[67]
Laufer, S.; Hauser, D.; Stegmiller, T.; Bracht, C.; Ruff, K.; Schattel, V.; Albrecht, W.; Koch, P. Tri- and tetrasubstituted imidazoles as p38α mitogen-activated protein kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(22), 6671-6675.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.012] [PMID: 20934337]
[68]
Laufer, S.A.; Wagner, G.K.; Kotschenreuther, D.A.; Albrecht, W. Novel substituted pyridinyl imidazoles as potent anticytokine agents with low activity against hepatic cytochrome P450 enzymes. J. Med. Chem., 2003, 46(15), 3230-3244.
[http://dx.doi.org/10.1021/jm030766k] [PMID: 12852754]
[69]
Ansideri, F.; Andreev, S.; Kuhn, A.; Albrecht, W.; Laufer, S.A.; Koch, P. A Diverse and Versatile Regiospecific Synthesis of Tetrasubstituted Alkylsulfanylimidazoles as p38α Mitogen-Activated Protein Kinase Inhibitors. Molecules, 2018, 23(1), 221.
[http://dx.doi.org/10.3390/molecules23010221] [PMID: 29361698]
[70]
Koch, P.; Ansideri, F. 2-Alkylsulfanyl-4(5)-aryl-5(4)-heteroaryli-midazoles: An Overview on Synthetic Strategies and Biological Activity. Archiv. Der. Pharmazie, 2017, 350, 1700258.
[http://dx.doi.org/10.1002/ardp.201700258]
[71]
Heider, F.; Haun, U.; Döring, E.; Kudolo, M.; Sessler, C.; Albrecht, W.; Laufer, S.; Koch, P. From 2-Alkylsulfanylimidazoles to 2-Alkylimidazoles: An Approach towards Metabolically More Stable p38α MAP Kinase Inhibitors. Molecules, 2017, 22(10), 1729.
[http://dx.doi.org/10.3390/molecules22101729] [PMID: 29036906]
[72]
Kaieda, A.; Takahashi, M.; Takai, T.; Goto, M.; Miyazaki, T.; Hori, Y.; Unno, S.; Kawamoto, T.; Tanaka, T.; Itono, S.; Takagi, T.; Hamada, T.; Shirasaki, M.; Okada, K.; Snell, G.; Bragstad, K.; Sang, B.C.; Uchikawa, O.; Miwatashi, S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg. Med. Chem., 2018, 26(3), 647-660.
[http://dx.doi.org/10.1016/j.bmc.2017.12.031] [PMID: 29291937]
[73]
Bracht, C.; Hauser, D.R.J.; Schattel, V.; Albrecht, W.; Laufer, S.A. Synthesis and biological testing of N-aminoimidazole-based p38α MAP kinase inhibitors. ChemMedChem, 2010, 5(7), 1134-1142.
[http://dx.doi.org/10.1002/cmdc.201000114] [PMID: 20473979]
[74]
Campbell, R.M.; Anderson, B.D.; Brooks, N.A.; Brooks, H.B.; Chan, E.M.; De Dios, A.; Gilmour, R.; Graff, J.R.; Jambrina, E.; Mader, M.; McCann, D.; Na, S.; Parsons, S.H.; Pratt, S.E.; Shih, C.; Stancato, L.F.; Starling, J.J.; Tate, C.; Velasco, J.A.; Wang, Y.; Ye, X.S. Characterization of LY2228820 dimesylate, a potent and selective inhibitor of p38 MAPK with antitumor activity. Mol. Cancer Ther., 2014, 13(2), 364-374.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0513] [PMID: 24356814]
[75]
Koch, P.; Laufer, S. Unexpected reaction of 2-alkylsulfanyl-imidazoles to imidazol-2-ones: pyridinylimidazol-2-ones as novel potent p38alpha mitogen-activated protein kinase inhibitors. J. Med. Chem., 2010, 53(12), 4798-4802.
[http://dx.doi.org/10.1021/jm100161q] [PMID: 20481631]
[76]
Kong, T.T.; Zhang, C.M.; Liu, Z.P. Recent developments of p38α MAP kinase inhibitors as antiinflammatory agents based on the imidazole scaffolds. Curr. Med. Chem., 2013, 20(15), 1997-2016.
[http://dx.doi.org/10.2174/0929867311320150006] [PMID: 23317165]
[77]
Bistrović, A.; Krstulović, L.; Harej, A.; Grbčić, P.; Sedić, M.; Koštrun, S.; Pavelić, S.K.; Bajić, M.; Raić-Malić, S. Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur. J. Med. Chem., 2018, 143, 1616-1634.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.061] [PMID: 29133046]
[78]
Dos Santos Nascimento, M.V.P.; Mattar Munhoz, A.C.; De Campos Facchin, B.M.; Fratoni, E.; Rossa, T.A.; Mandolesi Sá, M.; Campa, C.C.; Ciraolo, E.; Hirsch, E.; Dalmarco, E.M. New pre-clinical evidence of anti-inflammatory effect and safety of a substituted fluorophenyl imidazole. Biomed. Pharmacother., 2019, 111, 1399-1407.
[http://dx.doi.org/10.1016/j.biopha.2019.01.052] [PMID: 30841455]
[79]
Gokha, A.; Ansideri, F.; Andreev, S.; Schollmeyer, D.; Laufer, S.; Koch, P. N1-{4-[2-(Methylthio)-1H-imidazol-5-yl]pyridin-2-yl}benzene-1,4-diamine. Molbank, 2019, 1, M1048.
[http://dx.doi.org/10.3390/M1048]
[80]
Goldberg, D.R.; Hao, M.H.; Qian, K.C.; Swinamer, A.D.; Gao, D.A.; Xiong, Z.; Sarko, C.; Berry, A.; Lord, J.; Magolda, R.L.; Fadra, T.; Kroe, R.R.; Kukulka, A.; Madwed, J.B.; Martin, L.; Pargellis, C.; Skow, D.; Song, J.J.; Tan, Z.; Torcellini, C.A.; Zimmitti, C.S.; Yee, N.K.; Moss, N. Discovery and optimization of p38 inhibitors via computer-assisted drug design. J. Med. Chem., 2007, 50(17), 4016-4026.
[http://dx.doi.org/10.1021/jm070415w] [PMID: 17658737]
[81]
Cogan, D.A.; Aungst, R.; Breinlinger, E.C.; Fadra, T.; Goldberg, D.R.; Hao, M.H.; Kroe, R.; Moss, N.; Pargellis, C.; Qian, K.C.; Swinamer, A.D. Structure-based design and subsequent optimization of 2-tolyl-(1,2,3-triazol-1-yl-4-carboxamide) inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett., 2008, 18(11), 3251-3255.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.043] [PMID: 18462940]
[82]
Liu, C.; Wrobleski, S.T.; Lin, J.; Ahmed, G.; Metzger, A.; Wityak, J.; Gillooly, K.M.; Shuster, D.J.; McIntyre, K.W.; Pitt, S.; Shen, D.R.; Zhang, R.F.; Zhang, H.; Doweyko, A.M.; Diller, D.; Henderson, I.; Barrish, J.C.; Dodd, J.H.; Schieven, G.L.; Leftheris, K. 5-Cyanopyrimidine derivatives as a novel class of potent, selective, and orally active inhibitors of p38alpha MAP kinase. J. Med. Chem., 2005, 48(20), 6261-6270.
[http://dx.doi.org/10.1021/jm0503594] [PMID: 16190753]
[83]
Moss, N.; Breitfelder, S.; Betageri, R.; Cirillo, P.F.; Fadra, T.; Hickey, E.R.; Kirrane, T.; Kroe, R.R.; Madwed, J.; Nelson, R.M.; Pargellis, C.A.; Qian, K.C.; Regan, J.; Swinamer, A.; Torcellini, C. New modifications to the area of pyrazole-naphthyl urea based p38 MAP kinase inhibitors that bind to the adenine/ATP site. Bioorg. Med. Chem. Lett., 2007, 17(15), 4242-4247.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.042] [PMID: 17560108]
[84]
Somakala, K.; Amir, M. Synthesis, characterization and pharmaco-logical evaluation of pyrazolyl urea derivatives as potential anti-inflammatory agents. Acta Pharm. Sin. B, 2017, 7(2), 230-240.
[http://dx.doi.org/10.1016/j.apsb.2016.08.006] [PMID: 28303231]
[85]
Getlik, M.; Grütter, C.; Simard, J.R.; Nguyen, H.D.; Robubi, A.; Aust, B.; van Otterlo, W.A.; Rauh, D. Structure-based design, synthesis and biological evaluation of N-pyrazole, N¢-thiazole urea inhibitors of MAP kinase p38α. Eur. J. Med. Chem., 2012, 48, 1-15.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.019] [PMID: 22154891]
[86]
Ambure, P.S.; Gangwal, R.P.; Sangamwar, A.T. 3D-QSAR and molecular docking analysis of biphenyl amide derivatives as p38α mitogen-activated protein kinase inhibitors. Mol. Divers., 2012, 16(2), 377-388.
[http://dx.doi.org/10.1007/s11030-011-9353-y] [PMID: 22228035]
[87]
Lu, B.; Li, G.; Farina, V.; Senanayake, C.; Rodriguez, S.; Liu, J.; Yee, N. Development of a Practical Synthesis of 4-[6-(Morpholinomethyl)-pyridin-3-yl] naphthalen-1-amine, a Key Intermediate for the Synthesis of BIRB 1017, a Potent p38MAPK Inhibitor. Synlett, 2013, 24, 317-322.
[http://dx.doi.org/10.1055/s-0032-1317790]
[88]
Zhu, D.; Xing, Q.; Cao, R.; Zhao, D.; Zhong, W. Synthesis and p38 Inhibitory Activity of Some Novel Substituted N,N¢-Diarylurea Derivatives. Molecules, 2016, 21(5), 677.
[http://dx.doi.org/10.3390/molecules21050677] [PMID: 27223276]
[89]
de Oliveira Lopes, R.; Romeiro, N.C.; de Lima, C.K.F.; Louback da Silva, L.; de Miranda, A.L.; Nascimento, P.G.B.D.; Cunha, F.Q.; Barreiro, E.J.; Lima, L.M. Docking, synthesis and pharmacological activity of novel urea-derivatives designed as p38 MAPK inhibitors. Eur. J. Med. Chem., 2012, 54, 264-271.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.006] [PMID: 22647219]
[90]
Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-Based Benzothiazole/Benzoxazole Derivatives: Design, Synthesis, p38α MAPK Inhibition, Anti-Inflammatory Activity and Molecular Docking Studies. Bioorg. Chem., 2018, 18, 30536.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015]
[91]
Tariq, S.; Alam, O.; Amir, M. Synthesis, p38α MAPK inhibition, anti-inflammatory activity and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Archiv. Der. Pharmazie, 2018, 351(3-4), 1700304.
[http://dx.doi.org/10.1002/ardp.201700304]
[92]
Moallem, S.A.; Hadizadeh, F.; Abdol Abadi, F.; Shahraki, M.; Shamsara, J. Synthesis and Evaluation of Pyridinyltriazoles as Inhibitors of p38 MAP Kinase. Iran. J. Basic Med. Sci., 2012, 15(4), 945-950.
[PMID: 23493837]
[93]
Dinér, P.; Andersson, T.; Kjellén, J.; Elbing, K.; Hohmann, S.; Grøtli, M. Short cut to 1,2,3-triazole-based p38MAPK inhibitors via [3+2]-cycloaddition chemistry. New J. Chem., 2009, 33, 1010-1016.
[http://dx.doi.org/10.1039/B818909A]
[94]
Tariq, S.; Alam, O.; Amir, M. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorg. Chem., 2018, 76, 343-358.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.003] [PMID: 29227918]
[95]
Koch, P.; Jahns, H.; Schattel, V.; Goettert, M.; Laufer, S. Pyridinylquinoxalines and pyridinylpyridopyrazines as lead compounds for novel p38 α mitogen-activated protein kinase inhibitors. J. Med. Chem., 2010, 53(3), 1128-1137.
[http://dx.doi.org/10.1021/jm901392x] [PMID: 20078117]
[96]
Amin, K.M.; Syam, Y.M.; Anwar, M.M.; Ali, H.I.; Abdel-Ghani, T.M.; Serry, A.M. Synthesis and molecular docking study of new benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorg. Chem., 2018, 76, 487-500.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.029] [PMID: 29310080]
[97]
Amin, K.M.; Syam, Y.M.; Anwar, M.M.; Ali, H.I.; Abdel-Ghani, T.M.; Serry, A.M. Synthesis and molecular docking studies of new furochromone derivatives as p38α MAPK inhibitors targeting human breast cancer MCF-7 cells. Bioorg. Med. Chem., 2017, 25(8), 2423-2436.
[http://dx.doi.org/10.1016/j.bmc.2017.02.065] [PMID: 28291685]
[98]
Dyrager, C.; Möllers, L.N.; Kjäll, L.K.; Alao, J.P.; Dinér, P.; Wallner, F.K.; Sunnerhagen, P.; Grøtli, M. Design, synthesis, and biological evaluation of chromone-based p38 MAP kinase inhibitors. J. Med. Chem., 2011, 54(20), 7427-7431.
[http://dx.doi.org/10.1021/jm200818j] [PMID: 21905739]
[99]
Batran, R.Z.; Dawood, D.H.; El-Seginy, S.A.; Ali, M.M.; Maher, T.J.; Gugnani, K.S.; Rondon-Ortiz, A.N. New Coumarin Derivatives as Anti-Breast and Anti-Cervical Cancer Agents Targeting VEGFR-2 and p38α MAPK. Archiv. Der. Pharmazie, 2017., 3501700064.
[http://dx.doi.org/10.1002/ardp.201700064]
[100]
Bansal, Y.; Ratra, S.; Bansal, G.; Singh, I.; Enein, A.H.Y. Design and synthesis of coumarin substituted oxathiadiazolone derivatives having anti-inflammatory activity possibly through p38MAPK inhibition. J. Iran. Chem. Soc., 2009, 6, 504-509.
[http://dx.doi.org/10.1007/BF03246527]
[101]
Heo, J.; Shin, H.; Lee, J.; Kim, T.; Inn, K-S.; Kim, N.J. Synthesis and biological evaluation of N-cyclopropylbenzamide-benzophenone hybrids as novel and selective p38MAPK inhibitors. Bioorg. Med. Chem. Lett., 2015, 25, 3694-3698.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.036] [PMID: 26115577]
[102]
Montalban, A.G.; Boman, E.; Chang, C.D.; Ceide, S.C.; Dahl, R.; Dalesandro, D.; Delaet, N.G.; Erb, E.; Ernst, J.T.; Gibbs, A.; Kahl, J.; Kessler, L.; Kucharski, J.; Lum, C.; Lundström, J.; Miller, S.; Nakanishi, H.; Roberts, E.; Saiah, E.; Sullivan, R.; Urban, J.; Wang, Z.; Larson, C.J. Optimization of α-ketoamide based p38 inhibitors through modifications to the region that binds to the allosteric site. Bioorg. Med. Chem. Lett., 2010, 20(16), 4819-4824.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.102] [PMID: 20663667]
[103]
Ndagi, U.; Mhlongo, N.N.; Soliman, M.E. Emergence of a Promising Lead Compound in the Treatment of Triple Negative Breast Cancer: An Insight into Conformational Features and Ligand Binding Landscape of c-Src Protein with UM-164. Appl. Biochem. Biotechnol., 2018, 185(3), 655-675.
[http://dx.doi.org/10.1007/s12010-017-2677-z] [PMID: 29282631]
[104]
Garcia-Manero, G.; Khoury, H.J.; Jabbour, E.; Lancet, J.; Winski, S.L.; Cable, L.; Rush, S.; Maloney, L.; Hogeland, G.; Ptaszynski, M.; Calvo, M.C.; Bohannan, Z.; List, A.; Kantarjian, H.; Komrokji, R. A phase I study of oral ARRY-614, a p38 MAPK/Tie2 dual inhibitor, in patients with low or intermediate-1 risk myelodysplastic syndromes. Clin. Cancer Res., 2015, 21(5), 985-994.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1765] [PMID: 25480830]
[105]
Wollenberg, L.A.; Corson, D.T.; Nugent, C.A.; Peterson, F.L.; Ptaszynski, A.M.; Arrigo, A.; Mannila, C.G.; Litwiler, K.S.; Bell, S.J. An exploratory, randomized, parallel-group, open-label, relative bioavailability study with an additional two-period crossover food-effect study exploring the pharmacokinetics of two novel formulations of pexmetinib (ARRY-614). Clin. Pharmacol., 2015, 7, 87-95.
[http://dx.doi.org/10.2147/CPAA.S83871] [PMID: 26491375]
[106]
Emami, H.; Vucic, E.; Subramanian, S.; Abdelbaky, A.; Fayad, Z.A.; Du, S.; Roth, E.; Ballantyne, C.M.; Mohler, E.R.; Farkouh, M.E.; Kim, J.; Farmer, M.; Li, L.; Ehlgen, A.; Langenickel, T.H.; Velasquez, L.; Hayes, W.; Tawakol, A. The effect of BMS-582949, a P38 mitogen-activated protein kinase (P38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis, 2015, 240(2), 490-496.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.03.039] [PMID: 25913664]
[107]
Schieven, G. ary,L BMS- 582949 for the treatment of resistant rheumatic disease. U.S Patent 61/379,001, 2011 September ;01.
[108]
Liu, C.; Lin, J.; Hynes, J.; Wu, H.; Wrobleski, S.T.; Lin, S.; Dhar, T.G.; Vrudhula, V.M.; Sun, J.H.; Chao, S.; Zhao, R.; Wang, B.; Chen, B.C.; Everlof, G.; Gesenberg, C.; Zhang, H.; Marathe, P.H.; McIntyre, K.W.; Taylor, T.L.; Gillooly, K.; Shuster, D.J.; McKinnon, M.; Dodd, J.H.; Barrish, J.C.; Schieven, G.L.; Leftheris, K. Discovery of ((4-(5-(Cyclopropylcarbamoyl)-2-methylphenyl-amino)-5-methylpyrrolo[1,2-f][1,2,4]triazine-6-carbonyl)(propyl) carbamoyloxy)methyl-2-(4-(phosphonooxy)phenyl)acetate (BMS-751324), a Clinical Prodrug of p38α MAP Kinase Inhibitor. J. Med. Chem., 2015, 58(19), 7775-7784.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00839] [PMID: 26359680]
[109]
Vergote, I.; Heitz, F.; Buderath, P.; Powell, M.A.; Sehouli, J.; Lee, C.; Hamilton, A.L.; Fiorica, J.; Moore, K.L.; Teneriello, M.; Golden, L.; Zhang, W.; Pitou, C.; Farrington, D.L.; Bell-McGuinn, T.M.; Wenham, R.M. A randomized, double-blind, placebo-controlled phase Ib/II study of ralimetinib, a p38MAPK inhibitor, plus gemcitabine (G) and carboplatin (C) versus GC for women with recurrent platinum-sensitive ovarian cancer. J. Clin. Oncol., 2019, 37, 5537-5537.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.5537]
[110]
Patnaik, A.; Haluska, P.; Tolcher, A.W.; Erlichman, C.; Papadopoulos, K.P.; Lensing, J.L.; Beeram, M.; Molina, J.R.; Rasco, D.W.; Arcos, R.R.; Kelly, C.S.; Wijayawardana, S.R.; Zhang, X.; Stancato, L.F.; Bell, R.; Shi, P.; Kulanthaivel, P.; Pitou, C.; Mulle, L.B.; Farrington, D.L.; Chan, E.M.; Goetz, M.P. A First-in-Human Phase I Study of the Oral p38 MAPK Inhibitor, Ralimetinib (LY2228820 Dimesylate), in Patients with Advanced Cancer. Clin. Cancer Res., 2016, 22(5), 1095-1102.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1718] [PMID: 26581242]
[111]
National Academies of Sciences, Engineering, and Medicine. Biomarkers of Neuroinflammation: Proceedings of a Workshop; Washington, DC: The National Academies Press,. 2018.
[112]
Alam, J.; Blackburn, K.; Patrick, D. Neflamapimod: Clinical Phase 2b-Ready Oral Small Molecule Inhibitor of p38α to Reverse Synaptic Dysfunction in Early Alzheimer’s Disease. J. Prev. Alzheimers Dis., 2017, 4(4), 273-278.
[PMID: 29181493]
[113]
Scheltens, P.; Prins, N.; Lammertsma, A.; Yaqub, M.; Gouw, A.; Wink, A.M.; Chu, H.M.; van Berckel, B.N.M.; Alam, J.; Alam, J. An exploratory clinical study of p38α kinase inhibition in Alzheimer’s disease. Ann. Clin. Transl. Neurol., 2018, 5(4), 464-473.
[http://dx.doi.org/10.1002/acn3.549] [PMID: 29687023]
[114]
Fisk, M.; Cheriyan, J.; Mohan, D.; Forman, J.; Petaja, M.K.M.; McEniery, C.M.; Wilkinson, I.B. The p38MAPK inhibitor losmapimod in chronic obstructive pulmonary disease patients with systemic inflammation, stratified by fibrinogen: A randomised double-blind placebo-controlled trial. PLoS One, 2018, 13(3), e0194197.
[http://dx.doi.org/10.1371/journal.pone.0194197] [PMID: 29566026]
[115]
Doggrell, S.A.; Christensen, A.M. Does the p38 MAP kinase inhibitor pamapimod have potential for the treatment of rheumatoid arthritis? Expert Opin. Pharmacother., 2010, 11(14), 2437-2442.
[http://dx.doi.org/10.1517/14656566.2010.507631] [PMID: 20666701]
[116]
Zhao, X.; Ning, L.; Xie, Z.; Jie, Z.; Li, X.; Wan, X.; Sun, X.; Huang, B.; Tang, P.; Shen, S.; Qin, A.; Ma, Y.; Song, L.; Fan, S.; Wan, S. The Novel p38 Inhibitor, Pamapimod, Inhibits Osteoclastogenesis and Counteracts Estrogen-Dependent Bone Loss in Mice. J. Bone Miner. Res., 2019, 34(5), 911-922.
[http://dx.doi.org/10.1002/jbmr.3655] [PMID: 30615802]
[117]
Schreiber, S.; Feagan, B.; D’Haens, G.; Colombel, J.; Geboes, K.; Yurcov, M.; Steffgen, J. Oral p38MAPK Inhibition with BIRB 796 for Active Crohn’s Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Gastroenterol. Hepatol., 2006, 4, 325-334.
[http://dx.doi.org/10.1016/j.cgh.2005.11.013] [PMID: 16527696]
[118]
Jin, X.; Mo, Q.; Zhang, Y.; Gao, Y.; Wu, Y.; Li, J.; Hao, X.; Ma, D.; Gao, Q.; Chen, P. The p38 MAPK inhibitor BIRB796 enhances the antitumor effects of VX680 in cervical cancer. Cancer Biol. Ther., 2016, 17(5), 566-576.
[http://dx.doi.org/10.1080/15384047.2016.1177676] [PMID: 27082306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy