Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Saccharide-capped Superparamagnetic Copper Cations-doped Magnetite Nanoparticles for Biomedical Applications: A Novel and Simple Synthesis Procedure, In-situ Surface Engineering and Characterization

Author(s): Mustafa Aghazadeh *, Mohammad Reza Ganjali , Mina Mohebi Morad and Davoud Gharailou

Volume 16, Issue 5, 2020

Page: [770 - 778] Pages: 9

DOI: 10.2174/1573413716666191220120718

Price: $65

Abstract

Background: Recently, superparamagnetic and electromagnetic nano-materials have been extensively studied and their potential applications have also been investigated in various fields. In this regard, currently, Fe3O4 NPs are valuable candidates as diagnostic agents such as magnetic resonance imaging, enzyme immobilization, biosensing and cell labeling, and therapeutic probes, including drug delivery, bacteria detection, magnetic separation, and hyperthermia agents.

Objective: In this study, electrochemical synthesis of Cu2+ cations-doped superparamagnetic magnetite nanoparticles (Cu-SMNPs) and their in situ surface coating with saccharides (i.e., glucose, sucrose and starch) are reported. The prepared glucose/Cu-SMNPs, sucrose/Cu-SMNPs and starch/Cu-SMNPs samples are characterized by structural, magnetic and morphological analyses by XRD, FT-IR, FE-SEM, EDAX and VSM. The suitability of the prepared samples for biomedical use is also proved.

Methods: A simple cathodic electrochemical set-up was used to fabricate the iron oxide samples. The bath electrolyte was one litre deionized water containing 1.5g iron chloride, 3g iron nitrate, 0.5g copper chloride and 0.5g saccharide (i.e., glucose or sucrose or starch). The cathode and anode electrodes were connected to a DC power supply (PROVA 8000) as the power source. The deposition experiments were conducted at 10 mA cm-2 for 30 min. For the preparation of glucose/Cu-SMNPs, sucrose/Cu-SMNPs and starch/Cu-SMNPs samples, three electrodeposition experiments were carried out in three similar baths with only a change in the dissolved saccharide type. The prepared SMNPs samples were characterized by structural, morphological and magnetic analyses including X-ray powder diffraction (XRD, a Phillips PW-1800 diffractometer Smart Lab), field-emission scanning electron microscopy (FE-SEM, Mira 3-XMU with accelerating voltage of 100 kV), transmission electron microscopy (TEM, model Zeiss EM900 with an accelerating voltage of 80 kV), fourier transform infrared (FT-IR, a Bruker Vector 22 Fourier transformed infrared spectrometer) and vibrating sample magnetometers (VSM, model Lakeshore 7410).

Results: Three types of metal-cations doped superparamagnetic magnetite nanoparticles (SMNPs), glucosegrafted Cu2+-doped MNPs (glucose/Cu-SMNPs), sucrose-grafted Cu2+-doped SMNPs (sucrose/Cu-SMNPs) and starch-grafted Cu2+-doped SMNPs (starch/Cu-SMNPs), were prepared for the first time. Fourier-transform infrared spectroscopy, field-emission scanning electron microscopy and energy dispersive X-ray techniques proved the presence of saccharide capped layer on the surface of deposited SMNPs and also copper cations doping on their crystal structures. Superparamagnetic behaviors, including low coercivity and remanence values, were observed for all the prepared samples.

Conclusion: SMNPs capped with saccharides (i.e., glucose, sucrose and starch) were successfully synthesized via one-pot simple deposition procedures. These particles showed suitable superparamagnetic properties with negligible remanence values and proper saturation magnetization, thus proving that they all have required physicochemical and magnetic characteristics for biomedical purposes.

Keywords: Nanoparticles, electrochemical synthesis, Iron oxide, doping, surface grafting, SMNPs.

Graphical Abstract
[1]
Zirui, J.; Kejun, L.; Guanglei, W.; Hui, X.; Hongjing, Wu. Recent progresses of high-temperature microwave-absorbing materials. Nano, 2018, 13(6), 1830005.
[http://dx.doi.org/10.1142/S1793292018300050]
[2]
Wu, H.; Wu, G.; Wang, L. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol., 2015, 269, 443-451.
[http://dx.doi.org/10.1016/j.powtec.2014.09.045]
[3]
Wu, H.; Wu, G.; Ren, Y.; Yang, L.; Wang, L.; Li, X. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3, 7677-7690.
[http://dx.doi.org/10.1039/C5TC01716E]
[4]
Lan, D.; Qin, M.; Yang, R.; Chen, S.; Wu, H.; Fan, Y.; Fu, Q.; Zhang, F. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci., 2019, 533, 481-491.
[http://dx.doi.org/10.1016/j.jcis.2018.08.108] [PMID: 30176539]
[5]
Wu, H.; Qu, S.; Lin, K.; Qing, Y.; Wang, L.; Fan, Y.; Fu, Q.; Zhang, F. Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol., 2018, 333, 153-159.
[http://dx.doi.org/10.1016/j.powtec.2018.04.015]
[6]
Jia, Z.; Lan, D.; Lin, K.; Qin, M.; Kou, K.; Wu, G.; Wu, H. Progress in low-frequency microwave absorbing materials. J. Mater. Sci. Mater. Electron., 2018, 29, 17122-17136.
[http://dx.doi.org/10.1007/s10854-018-9909-z]
[7]
Mohammed, L.; Gomaa, H.G.; Raga, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 2017, 30, 1-14.
[http://dx.doi.org/10.1016/j.partic.2016.06.001]
[8]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7(1), 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[9]
Sun, C.; Lee, J.S.H.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11), 1252-1265.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[10]
Vaghari, H.; Jafarizadeh-Malmiri, H.; Mohammadlou, M.; Berenjian, A.; Anarjan, N.; Jafari, N.; Nasiri, S. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett., 2016, 38(2), 223-233.
[http://dx.doi.org/10.1007/s10529-015-1977-z] [PMID: 26472272]
[11]
Shubayev, V.I.; Pisanic, T.R., II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev., 2009, 61(6), 467-477.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[12]
Zeinali Sehrig, F.; Majidi, S.; Nikzamir, N.; Nikzamir, N.; Nikzamir, M.; Akbarzadeh, A. Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 918-927.
[PMID: 25613027]
[13]
Moise, S.; Céspedes, E.; Soukup, D.; Byrne, J.M.; El Haj, A.J.; Telling, N.D. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci. Rep., 2017, 7, 39922.
[http://dx.doi.org/10.1038/srep39922] [PMID: 28045082]
[14]
Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 2010, 62(2), 144-149.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[15]
Revia, R.A.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington), 2016, 19(3), 157-168.
[http://dx.doi.org/10.1016/j.mattod.2015.08.022] [PMID: 27524934]
[16]
Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother., 2013, 18(6), 397-400.
[http://dx.doi.org/10.1016/j.rpor.2013.09.011] [PMID: 24416585]
[17]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Improvement of supercapacitive and superparamagnetic capabilities of iron oxide through electrochemically grown La3+ doped Fe3O4 nanoparticles. J. Mater. Sci. Mater. Electron., 2017, 28(24), 19061-19070.
[http://dx.doi.org/10.1007/s10854-017-7860-z]
[18]
Hosseini, M.; Aghazadeh, M.; Ganjali, M.R. A facile one-pot synthesis of cobalt-doped magnetite/graphene nanocomposite as peroxidase mimetics in dopamine detection. New J. Chem., 2017, 41, 12678-12684.
[http://dx.doi.org/10.1039/C7NJ02082A]
[19]
Chang, J.; Guan, X.; Pan, S.; Jia, M.; Chen, Y.; Fan, H. Sulfonated poly(styrene-divinylbenzene-glycidyl methacrylate)-capsulated magnetite nanoparticles as a recyclable catalyst for one-step biodiesel production from high free fatty acid-containing feedstocks. New J. Chem., 2018, 42, 13074-13080.
[http://dx.doi.org/10.1039/C7NJ05075E]
[20]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J. Mater. Sci. Mater. Electron., 2017, 28(18), 13532-13539.
[http://dx.doi.org/10.1007/s10854-017-7192-z]
[21]
Sruthi, P.D.; Sai Sahithya, C.; Justin, C. SaiPriya, C.; Sai Bhavya, K.; Senthil kumar, P.; Samro, A.V. Utilization of chemically synthesized super paramagnetic iron oxide nanoparticles in drug delivery, imaging and heavy metal removal. J. Cluster Sci., 2019, 30(1), 11-24.
[http://dx.doi.org/10.1007/s10876-018-1454-7]
[22]
Aghazadeh, M. One-step cathodic electrosynthesis of surface capped Fe3O4 ultra-fine nanoparticles from ethanol medium without using coating agent. Mater. Lett., 2018, 211, 225-229.
[http://dx.doi.org/10.1016/j.matlet.2017.09.086]
[23]
Aghazadeh, M.; Ganjali, M.R. One-pot electrochemical synthesis and assessment of super-capacitive and super-paramagnetic performances of Co2+ doped Fe3O4 ultra-fine particles. J. Mater. Sci. Mater. Electron., 2018, 29(3), 2291-2300.
[http://dx.doi.org/10.1007/s10854-017-8145-2]
[24]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R.; Behzad, A. Mn2+-doped Fe3O4 nanoparticles: A novel preparation method, structural, magnetic and electrochemical characterizations. J. Mater. Sci. Mater. Electron., 2017, 28(23), 18121-18129.
[http://dx.doi.org/10.1007/s10854-017-7757-x]
[25]
Belanova, A.A.; Gavalas, N.; Makarenko, Y.M.; Belousova, M.M.; Soldatov, A.V.; Zolotukhin, P.V. Physicochemical properties of magnetic nanoparticles: Implications for biomedical applications in vitro and in vivo. Oncol. Res. Treat., 2018, 41(3), 139-143.
[http://dx.doi.org/10.1159/000485020] [PMID: 29485418]
[26]
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., 2015, 44(23), 8576-8607.
[http://dx.doi.org/10.1039/C5CS00541H] [PMID: 26390044]
[27]
Bohara, R.A.; Thorat, N.D.; Pawar, S.H. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv., 2016, 6, 43989-44012.
[http://dx.doi.org/10.1039/C6RA02129H]
[28]
Kang, T.; Li, F.; Baik, S.; Shao, W.; Ling, D.; Hyeon, T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.013] [PMID: 28525855]
[29]
Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int., 2016, 26, 440-448.
[http://dx.doi.org/10.1016/j.pnsc.2016.09.004]
[30]
Abu-Dief, A.M.; Abdel-Fatah, S.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 55-67.
[31]
Aghazadeh, M.; Karimzadeh, I. One-pot electro-synthesis and characterization of chitosan capped superparamagnetic iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci., 2018, 14(1), 42-49.
[32]
Aghazadeh, M. Polyvinylpyridine (PVP)-grafted magnetite nanoparticles: Facile fabrication through cathodic deposition from ethanol media and their physico-chemical properties. Anal. Bioanal. Electrochem., 2018, 10(4), 508-519.
[33]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. PVP coated Mn2+ doped Fe3O4 nanoparticles: A novel preparation method, surface engineering and characterization. Mater. Lett., 2018, 228, 137-140.
[http://dx.doi.org/10.1016/j.matlet.2018.05.087]
[34]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Norouzi, P.; Shirvani-Arani, S. A novel method for preparation of bare and poly(vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater. Lett., 2016, 179, 5-8.
[http://dx.doi.org/10.1016/j.matlet.2016.05.048]
[35]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Dourudi, T. Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical deposition (CED). Curr. Nanosci., 2017, 13(2), 167-174.
[http://dx.doi.org/10.2174/1573413713666161129160640]
[36]
Sakhi Jabir, M.; Muhsen Nayef, U.; Kamel Abdul Kadhim, W. Polyethylene glycol-functionalized magnetic (Fe3O4) nanoparticles: A novel DNA-mediated antibacterial agent. Nano Biomed. Eng., 2019, 11(1), 18-27.
[37]
Karimzadeh, I.; Rezagholipour Dizaji, H.; Aghazadeh, M. Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater. Res. Express, 2016, 3(9), 095022.
[http://dx.doi.org/10.1088/2053-1591/3/9/095022]
[38]
Shete, P.B.; Patil, R.M.; Tiwale, B.M.; Pawar, S.H. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater., 2015, 377, 406-410.
[http://dx.doi.org/10.1016/j.jmmm.2014.10.137]
[39]
Aghazadeh, M.; Karimzadeh, I. One-step cathodic electrochemical synthesis and characterization of dextran coated magnetite nanoparticles. J. Nanoanal., 2017, 4(3), 228-238.
[40]
Karimzadeh, I.; Aghazadeh, M.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H.; Gharailou, D. Superparamagnetic iron oxide nanoparticles modified with alanine and leucine for biomedical applications: Development of a novel efficient preparation method. Curr. Nanosci., 2017, 13(3), 274-280.
[http://dx.doi.org/10.2174/1573413713666170118125937]
[41]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R. Preparation and characterization of amine-and carboxylic acid-functionalized superparamagnetic iron oxide nanoparticles through a one-step facile electrosynthesis method. Curr. Nanosci., 2019, 15(2), 169-177.
[42]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R.; Mohebi Morad, M. A novel preparation method for surface coated superparamagnetic Fe3O4 nanoparticles with vitamin C and sucrose. Mater. Lett., 2017, 196, 392-395.
[http://dx.doi.org/10.1016/j.matlet.2017.03.064]
[43]
Hu, P.; Chang, T.; Chen, W.J.; Deng, J.; Li, S.L.; Zuo, Y.G. Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol-gel explosion-assisted method. J. Alloys Compd., 2019, 773, 605-611.
[http://dx.doi.org/10.1016/j.jallcom.2018.09.238]
[44]
Abu Noqta, O.; Abdul Aziz, A.; Adamu Usman, I.; Bououdina, M. Recent advances in iron oxide nanoparticles (IONPs): Synthesis and surface modification for biomedical applications. J. Supercond. Nov. Magn., 2018, 32(4), 779-795.
[http://dx.doi.org/10.1007/s10948-018-4939-6]
[45]
Arsalani, S.; Guidelli, E.J.; Silveira, M.A.; Salmon, C.E.G.; Araujo, J.F.D.F.; Bruno, A.C.; Baffa, O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J. Magn. Magn. Mater., 2019, 475, 458-464.
[http://dx.doi.org/10.1016/j.jmmm.2018.11.132]
[46]
Arévalo, P.; Isasi, J.; Caballero, A.C.; Marco, J.F.; Martín-Hernández, F. Magnetic and structural studies of Fe3O4 nanoparticles synthesized via coprecipitation and dispersed in different surfactants. Ceram. Int., 2017, 43(13), 10333-10340.
[http://dx.doi.org/10.1016/j.ceramint.2017.05.064]
[47]
Aghazadeh, M.; Yavari, K. Galvanostatic deposition of magnetite nanoparticles for biomedical applications: Simple preparation and surface modification with polyethylenimine and polyvinyl chloride. Anal. Bioanal. Electrochem., 2018, 10(11), 1426-1436.
[48]
Aghazadeh, M.; Ganjali, M.R. Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: Development of novel iron-based electrode. Ceram. Int., 2018, 44(1), 520-529.
[http://dx.doi.org/10.1016/j.ceramint.2017.09.206]
[49]
Aghazadeh, M.; Barmi, A.A.M.; Hosseinifard, M. Nanoparticulates Zr(OH)4 and ZrO2 prepared by low-temperature cathodic electrodeposition. Mater. Lett., 2012, 73, 28-31.
[http://dx.doi.org/10.1016/j.matlet.2011.12.118]
[50]
Aghazadeh, M. Cathodic electrochemical deposition of nanostructured metal oxides/hydroxides and their composites for supercapacitor applications: A review. Anal. Bioanal. Electrochem., 2019, 11(2), 211-266.
[51]
Aghazadeh, M.; Karimzadeh, I.; Ghannadi Maragheh, M.; Ganjali, M.R. Gd3+ doped Fe3O4 nanoparticles with proper magnetic and supercapacitive characteristics: A novel synthesis platform and characterization. Korean J. Chem. Eng., 2018, 35, 1341-1347.
[http://dx.doi.org/10.1007/s11814-018-0027-7]
[52]
Aghazadeh, M.; Golikand, A.N.; Ghaemi, M. Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. Int. J. Hydrogen Energy, 2011, 36(14), 8674-8679.
[http://dx.doi.org/10.1016/j.ijhydene.2011.03.144]
[53]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Electrochemical fabrication of praseodymium cations doped iron oxide nanoparticles with enhanced charge storage and magnetic capabilities. J. Mater. Sci. Mater. Electron., 2018, 29(6), 5163-5172.
[http://dx.doi.org/10.1007/s10854-017-8481-2]
[54]
Aghazadeh, M.; Karimzadeh, I.; Ahmadi, A.; Ganjali, M.R.; Norouzi, P. Cobalt hydroxide hexagonal nanoplates anchored on functionalized carbon nanotubes (CNTs) for supercapacitor applications: one-pot electrochemical fabrication of high performance nanocomposite. J. Mater. Sci. Mater. Electron., 2018, 29(17), 14378-14386.
[http://dx.doi.org/10.1007/s10854-018-9570-6]
[55]
Aghazadeh, M.; Maragheh, M.G.; Ganjali, M.R.; Norouzi, P. Preparation and characterization of Mn5O8 nanoparticles: A novel and facile pulse cathodic electrodeposition followed by heat-treatment. Inorg. Nano-Metal Chem., 2017, 27(7), 1085-1089.
[http://dx.doi.org/10.1080/24701556.2017.1284092]
[56]
Aghazadeh, M.; Ganjali, M.R. Starch-assisted electrochemical fabrication of high surface area cobalt hydroxide nanosheets for high performance supercapacitors. J. Mater. Sci. Mater. Electron., 2017, 28(15), 11406-11414.
[http://dx.doi.org/10.1007/s10854-017-6935-1]
[57]
Aghazadeh, M. Synthesis, characterization, and study of the supercapacitive performance of NiO nanoplates prepared by the cathodic electrochemical deposition-heat treatment (CED-HT) method. J. Mater. Sci. Mater. Electron., 2017, 28(3), 3108-3117.
[http://dx.doi.org/10.1007/s10854-016-5899-x]
[58]
Aghazadeh, M.; Ghaemi, M.; Golikand, A.N.; Ahmadi, A. Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater. Lett., 2012, 65(15-16), 2545-2548.
[http://dx.doi.org/10.1016/j.matlet.2011.02.044]
[59]
Tipsawat, P.; Wongpratata, U.; Phumying, S.; Chanlek, N.; Chokprasombat, K.; Maensiri, S. Magnetite (Fe3O4) nanoparticles: Synthesis, characterization and electrochemical properties. Appl. Surf. Sci., 2018, 446, 287-292.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.053]
[60]
Asoufi, H.M.; Al-Antary, T.M.; Awwad, A.M. Magnetite (Fe3O4) nanoparticles synthesis and anti green peach aphid activity (Myzus persicae Sulzer). J. Chem. Biochem., 2018, 6(1), 9-16.
[http://dx.doi.org/10.15640/jcb.v6n1a2]
[61]
Sivakumar, D.; Mohamed Rafi, M.; Sathyaseelan, B.; Prem Nazeer, K.M.; Ayisha Begam, A.M. Synthesis and characterization of superparamagnetic iron oxide nanoparticles (SPIONs) stabilized by glucose, fructose and sucrose. Int. J. Nanodimens., 2017, 8(3), 257-264.
[62]
Aghazadeh, M. Electrochemical synthesis of dextran- and polyethyleneimine-coated superparamagnetic iron oxide nanoparticles and investigation of their physico-chemical characters. Anal. Bioanal. Electrochem., 2019, 11(3), 362-372.
[63]
Herea, D.D.; Chiriac, H.; Lupu, N.; Grigoras, M.; Stoian, G.; Stoica, B.A.; Petreusb, T. Study on iron oxide nanoparticles coated with glucose-derived polymers for biomedical applications. Appl. Surf. Sci., 2015, 352, 117-125.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.137]
[64]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Norouzi, P.; Doroudi, T. Saccharide-coated superparamagnetic Fe3O4 nanoparticles (SPIONs) for biomedical applications: An efficient and scalable route for preparation and in situ surface coating through cathodic electrochemical deposition (CED). Mater. Lett., 2017, 189, 290-294.
[http://dx.doi.org/10.1016/j.matlet.2016.12.010]
[65]
Ayu, Y.S.; Candra, A.S.; Denny, K.; Hasibuan, P.; Ginting, M.; Sebayang, P.; Simamora, P. Synthesis, properties and application of glucose coated Fe3O4 nanoparticles prepared by co-precipitation method. IOP Conf. Ser. Mater. Sci. Eng., 2017, 214, 012021.
[66]
Karimzadeh, I.; Cheraghali, R. Saccharide capped superparamagnetic metal-ion doped iron oxide nanoparticles: A facile electrochemical approach to production. Anal. Bioanal. Electrochem., 2018, 10(8), 991-1003.
[67]
Kim, D.K.; Mikhaylova, M.; Wang, F.H.; Kehr, J.; Bjelke, B.; Zhang, Y.; Tsakalakos, T.; Muhammed, M. Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater., 2003, 15, 4343-4351.
[http://dx.doi.org/10.1021/cm031104m]
[68]
Chen, C.; Jiang, X.; Valentino Kaneti, Y.; Yu, A. Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol., 2013, 236, 157-163.
[http://dx.doi.org/10.1016/j.powtec.2012.03.008]
[69]
Aghazadeh, M.; Ganjali, M.R. One-step electro-synthesis of Ni2+ doped magnetite nanoparticles and study of their supercapacitive and superparamagnetic behaviors. J. Mater. Sci. Mater. Electron., 2018, 29(6), 4981-4991.
[http://dx.doi.org/10.1007/s10854-017-8459-0]
[70]
Aghazadeh, M.; Ganjali, M.R. Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: A novel preparation strategy and characterization. J. Mater. Sci., 2018, 53(1), 295-308.
[http://dx.doi.org/10.1007/s10853-017-1514-7]
[71]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Improved supercapacitive performance of pure iron oxide electrode through cathodically grown of ultra-fine nanoparticles. Mater. Lett., 2017, 209, 450-454.
[http://dx.doi.org/10.1016/j.matlet.2017.08.043]
[72]
Liu, T.; Zhang, X.; Li, B.; Ding, J.; Liu, Y.; Li, G.; Meng, X.; Cai, Q.; Zhang, J. Fabrication of quasi-cubic Fe3O4 @rGO composite via colloid electrostatic self-assembly process for supercapacitors. RSC Advances, 2014, 4, 50765-50770.
[http://dx.doi.org/10.1039/C4RA07224C]
[73]
Ehsani, M.H.; Esmaeili, S.; Aghazadeh, M.; Kameli, P.; Shariatmadar Tehrani, F.; Karimzadeh, I. An investigation on the impact of Al doping on the structural and magnetic properties of Fe3O4 nanoparticles. Appl. Phys., A Mater. Sci. Process., 2019, 125, 280.
[http://dx.doi.org/10.1007/s00339-019-2572-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy