Skip to main content
Log in

Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Silver oxide nanoparticles (AgO NPs) were synthesized by implementing chemical reduction process and two different samples of AgO NPs were loaded with 100 as well as 200 pulses of successive shock waves of Mach number 2.2 so as to investigate the aftermath effect. Various characteristic analytical techniques were carried out for the samples utilizing Powder X-ray diffractometer (PXRD), Ultra-Violet diffuse reflectance spectroscope (UV-DRS), Field emission scanning electron microscope (FE-SEM) and Vibrating sample magnetometer (VSM) to find stabilities of crystallographic, spectroscopic, morphological and magnetic behaviors and also to analyze the changes occurring on the properties of the test material due to the impulsion of shock waves. From the obtained XRD patterns, the mean value of grain sizes of unshocked, 100 and 200 shocked AgO NPs is found to be 20, 20.6 and 26 nm, respectively. FE-SEM images reveal that the mean values of particle sizes increase as the counting of shock pulses are increased. The particles sizes are computed to be 72 nm, 112 nm, and 162 nm for the unshocked, 100 and 200 shocked AgO NPs, respectively. Whereas, the values of magnetization of AgO NPs have reduced with regard to the number of shock waves in such a way that the value of 2.183 emu/g for the unshocked AgO NPs is found to have reduced to 1.801 and 1.416 emu/g for 100 and 200 shocks, receptively. The band gap energy of the unshocked and shocked AgO NPs is observed to have the same value of 2.1 eV. From the experiential results, it is very well established that the title material’s properties such as crystalline and molecular structure, band gap energy are stable; whereas, the magnetic properties and surface morphology undergo subtle changes at shocked conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ravichandran, S., Paluria, V., Kumar, G., Loganathan, K., Venkata, B.R.K.: A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. J. Exp. Nanosci. 11, 445458 (2016)

    Article  CAS  Google Scholar 

  2. Limbitot, M., Kalyane, S., Sharanappa, N., Manjula, S., Evale, B.: Electrical and dielectric studies of silver oxide doped polyaniline [AgO/PANI] nanocomposite. Int. J. Adv. Sci. Res. 3, 87–93 (2018)

    Google Scholar 

  3. Dhoondia, Z.H., Chakraborty, H.: lactobacillus mediated synthesis of silver oxide. Nanopart. Nanomater. Nanotechnol. 2, 1–7 (2012)

    Article  Google Scholar 

  4. Sagadevan, S.: Synthesis, Structural, surface morphology, optical and electrical properties of silver oxide nanoparticles. Int. J. Nanoelectron. Mater. 9, 37–49 (2016)

    Google Scholar 

  5. Gallardo, O.A.D., Moiraghi, R., Macchione, M.A., Godoy, J.A., Perez, M.A., Coronado, E.A., Macagno, V.A.: Silver oxide articles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature. RSC Adv. 2, 2923–2929 (2012)

    Article  CAS  Google Scholar 

  6. Li, Q., Liu, B., Wang, L., Li, D., Liu, R., Zou, Bo, Cui, T., Zou, G.: Pressure-induced amorphization and polyamorphism in one-dimensional single-crystal TiO2 nanomaterials. J. Phys. Chem. Lett. 1, 309–314 (2010)

    Article  CAS  Google Scholar 

  7. Xiao, G., Yang, X., Zhang, X., Wang, K., Huang, X., Ding, Z., Ma, Y., Zou, G., Zou, Bo: A protocol to fabricate nanostructured new phase: B31-Type MnS synthesized under high pressure. J. Am. Chem. Soc. 137, 10297–10303 (2015)

    Article  CAS  Google Scholar 

  8. Siyu, Lu, Xiao, G., Sui, L., Feng, T., Yong, X., Zhu, S., Li, B., Liu, Z., Zou, Bo, Jin, M., Tse, J.S., Yan, Hu, Yang, B.: Piezochromic carbon dots with two-photon fluorescence. Angew. Chem. Int. Ed. 56, 1–6 (2017)

    Article  CAS  Google Scholar 

  9. Bandaru, N., Kumar, R.S., Sneed, D., Tschauner, O., Baker, J., Antonio, D., Luo, S.-N., Hartmann, T., Zhao, Y., Venkat, R.: Effect of Pressure and Temperature on Structural Stability of MoS2. J. Phys. Chem. C 118, 3230–3235 (2014)

    Article  CAS  Google Scholar 

  10. Devika, M., Reddy, N.K., Jayaram, V., Reddy, K.P.J.: Sustainability of aligned ZnO nanorods under dynamic shock-waves. Adv. Mater. Lett. 8, 398–403 (2017)

    Article  CAS  Google Scholar 

  11. Zhu, Y.Q., Sekine, T., Brigatti, K.S., Firth, S., Tenne, R., Rosentsveig, R., Kroto, H.W., Walton, D.R.M.: Shock-wave resistance of WS2 nanotubes. J. Am. Chem. Soc. 125, 1329–1333 (2003)

    Article  CAS  Google Scholar 

  12. Jayaram, V., Gupta, A., Reddy, K.P.J.: Investigation of strong shock wave interactions with CeO2 ceramic. J. Adv. Ceram. 3, 297–305 (2014)

    Article  CAS  Google Scholar 

  13. Tun-Dong, L., Ji-Wen, Z., Gui-Fang, S., Tian-E, F., Yu-Hua, W.: Morphology and structural stability of Pt–Pd bimetallic nanoparticles. Chin. Phys. B 24, 033601 (2015)

    Article  CAS  Google Scholar 

  14. Sivakumar, A., Dhas, S.S.J., Dhas, S.A.M.B.: Assessment of crystallographic and magnetic phase stabilities on MnFe2O4 nano crystalline materials at shocked conditions. Solid State. Sci. 107, 106340 (2020)

    Article  CAS  Google Scholar 

  15. Sivakumar, A., Saranraj, A., Dhas, S.S.J., et al.: Spectroscopic assessment on the stability of benzophenone crystals at shock waves loaded condition. Spectrochim. Acta Part A 242, 118725 (2020)

    Article  CAS  Google Scholar 

  16. Gopinath, N.K., Jagadeesh, G., Basu, B.: Shock wave material interaction in ZrB2–SiC based ultra high temperature ceramics for hypersonic applications. J. Am. Ceram. Soc. 00, 1–14 (2019)

    Google Scholar 

  17. Reddy, N.K., Moon, W.J., Kwon, Y.B., Jayaram, V., Arunan, E., Reddy, K.P.J.: Sustainability of carbon nanocomposites under high temperature and pressure. J. Basic. Appl. Phys 2, 78–85 (2013)

    Article  Google Scholar 

  18. Chinke, S.L., Sandhu, I.S., Saroha, D.R., Alegaonkar, P.S.: Graphene-like nanoflakes for shock absorption applications. ACS Appl. Nano Mater. 1, 6027–6037 (2018)

    Article  CAS  Google Scholar 

  19. Rita, A., Sivakumar, A., Dhas, S.A.M.B.: Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J. Nanostruc. Chem. 1, 3–8 (2019)

    Google Scholar 

  20. Kalaiarasi, S., Sivakumar, A., Dhas, S.A.M.B., Jose, M.: Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72–75 (2018)

    Article  CAS  Google Scholar 

  21. Sivakumar, A., Victor, C., Nayak, M.M., Dhas, S.A.M.B.: Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions. Mater. Res. Express 6, 045031 (2019)

    Article  CAS  Google Scholar 

  22. Rita, A., Sivakumar, A., Jose, M., Dhas, S.A.M.B.: Shock wave recovery studies on structural and magnetic properties of α-Fe2O3 NPs. Mater. Res. Exp. 6, 095035 (2019)

    Article  CAS  Google Scholar 

  23. Rita, A., Sivakumar, A., Dhas, S.A.M.B.: Investigation of structural and magnetic phase behaviour of nickel oxide nanoparticles under shock wave recovery experiment. J. Superconduct. Novel Magnet. 1, 3–8 (2020)

    Google Scholar 

  24. Sivakumar, A., Soundarya, S., Jude Dhas, S.S., Bharathi, K.K., Dhas, S.A.M.B.: Shock wave driven solid state phase transformation of Co3O4 to CoO nanoparticles. J. Phys. Chem. C 124, 10755–10763 (2020)

    Article  CAS  Google Scholar 

  25. Ning, L., Hongwen, J., Zhanguo, M., Liyuan, Y.: Synthesis of nanoscale high purity rutile titania by a rapid gas-phase chemical reaction. Mater. Lett. 137, 164–166 (2014)

    Article  CAS  Google Scholar 

  26. Lee, B.T., Han, J.K., Gain, A.K., Lee, K.H., Saito, F.: TEM microstructure characterization of nano TiO2 coated on nano ZrO2 powders and their photocatalytic activity. Mater. Lett. 60, 2101–2104 (2006)

    Article  CAS  Google Scholar 

  27. Tianimoghadam, S., Salabat, A.: A micro emulsion method for preparation of thiol-functionalized gold nanoparticles. Particuology. 37, 33–36 (2018)

    Article  CAS  Google Scholar 

  28. Yong, N.L., Ahmad, A., Mohammad, A.W.: Synthesis and characterization of silver oxide nanoparticles by a novel method. Int. J. Sci. Eng. Res. 4, 155–158 (2013)

    Google Scholar 

  29. Sivakumar, A., Balachandar, S., Dhas, S.A.M.B.: Measurement of “Shock Wave Parameters” in a novel table-top shock tube using Microphones. Hum. Fact. Mech. Eng. Def. Saf. 4, 3–7 (2020)

    Article  Google Scholar 

  30. Haq, S.: Fabrication and characterization of AgO, SnO2 and TiO2 nanoparticles for multiple applications. Thesis submitted in department of chemistry Hazara University, Mansehra. 1, 1–130 (2017)

  31. Gueddouh, A.: Magnetic moment collapse induced by high-pressure in semiborides TM2B (TM=Fe, Co). A first-principles study. Chin. J. Phys. 56, 944–957 (2018)

    Article  CAS  Google Scholar 

  32. Gueddouh, A.: The effects of magnetic moment collapse under high pressure, on physical properties in mono-borides TMB (TM = Mn, Fe): a first-principles. Phase Trans. 338, 1–17 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martin Britto Dhas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rita, A., Sivakumar, A., Dhas, S.S.J. et al. Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J Nanostruct Chem 10, 309–316 (2020). https://doi.org/10.1007/s40097-020-00351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00351-z

Keywords

Navigation