Skip to main content
Log in

Resistance of a Halobacterium salinarum isolate from a solar saltern to cadmium, lead, nickel, zinc, and copper

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The current study focuses on the tolerance of a strain of Halobacterium salinarum isolated from Sfax solar saltern (Tunisia) towards cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), and copper (Cu) by using agar dilution methods in complex and minimal media. The results showed the least inhibitory metals based on Minimum Inhibitory Concentrations (MICs) were lead (MIC = 4.5 mM), cadmium (MIC = 4 mM), and nickel (MIC = 2.5 mM) in complex medium. The MICs of these metals were more inhibitory (MIC < 2 mM) in the other tested media. The archaeal strain revealed a high sensitivity for copper and zinc, with MICs below 0.5 mM for both metals. Growth kinetics in complex and minimal media showed the strain to be more sensitive to the metals in liquid media than in solid media. The growth kinetic assays indicated the presence of selected heavy metals resulted in a lower growth rate and lower total cell mass relative to the control. Despite that cadmium and lead are nonessential and have no nutrient value, they were the most tolerated metals by H. salinarum strain. In addition, pigment intensity in the strain was inhibited by the presence of the heavy metals relative to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Momani FA, Massadeh AM, Hadad YA (2007) Uptake of zinc and copper by halophilic bacteria isolated from the Dead Sea Shore, Jordan. Biol Trace Elem Res 115:291–300

    CAS  PubMed  Google Scholar 

  • Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S (2005) Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming bacilli. World J Microbiol Biotechnol 21:1237–1243

    CAS  Google Scholar 

  • Amoozegar MA, Ghazanfar N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progress Biol Scib 2:1–11

    Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178

    CAS  PubMed  Google Scholar 

  • Azri C, Maalej A, Medhioub K, Rosset R (2007) Evolution of atmospheric pollutants in the city of Sfax (Tunisia) (October 1996–June 1997). Atmosfera 20:223–246

    Google Scholar 

  • Azri C, Abida H, Medhioub K (2009) Geochemical behaviour of the Tunisian background aerosols in sirocco wind circulations. Adv Atmos Sci 26:390–402

    CAS  Google Scholar 

  • Azri C, Abida H, Medhioub K (2010) Geochemical behaviour of the aerosol sampled in a suburban zone of Sfax City (Tunisia). Int J Environ Pollut 41:51–69

    CAS  Google Scholar 

  • Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–517

    CAS  PubMed  Google Scholar 

  • Baati H, Amdouni R, Azri C, Gharsallah N, Ammar E (2012) Brines modelling progress: a management tool for Tunisian multipond solar salterns, based on physical, chemical, and microbial parameters. Geomicrobiol J 29:139–150

    Google Scholar 

  • Baati H, Bahloul M, Amdouni R, Azri C (2020) Metal contamination and resistance of superficial sediment’s prokaryotic flora in extreme environments: case of Sfax solar saltern (Tunisia). Geomicrobiol J 37:345–354

    CAS  Google Scholar 

  • Bahloul M, Chabbi I, Dammak R, Amdouni R, Medhioub K, Azri C (2015a) Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, Southern Tunisia. Environ Monit Assess 177:1–17

    Google Scholar 

  • Bahloul M, Chabbi I, Sdiri A, Amdouni R, Medhioub K, Azri C (2015b) Spatiotemporal variation of particulate fallout instances in Sfax City, Southern Tunisia: influence of sources and meteorology. Adv Meteorol 471396:11

    Google Scholar 

  • Berney M, Weilenmann HU, IhssenJ BassinC, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72:2586–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhojiya AA, Joshi H (2016) Heavy metal tolerance pattern of Pseudomonas Putida isolated from heavy metal contaminated soil of Zawar, Udaipur (India). Int J Innov Knowl Concept 2:58–64

    Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73:1–16

    CAS  PubMed  Google Scholar 

  • Bonete MJ, Bautista V, Esclapez J, Bonete MJG, Pire C, Camacho M, Crespo JT, Espinosa RMM (2015) New uses of Haloarchaeal species in bioremediation processes. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. INTECH, London, pp 23–49

    Google Scholar 

  • Boujelben I, Martinez-Garcia M, Pelt JV, Maalej S (2014) Diversity of cultivable halophilic Archaea and Bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie Leeuwenhoek 106:675–692

    CAS  PubMed  Google Scholar 

  • Braganca JM, Furtado I (2009) Isolation and characterization of haloarchaea from low-salinity coastal sediments and waters of Goa. Curr Sci 96:1182–1184

    CAS  Google Scholar 

  • Braganca JM, Furtado I (2013) Resistance of Halobacterium strain R1 to cadmium during growth in mineral salts medium devoid of growth factors. Asian J Microbiol Biotech Environ Sci 15:299–302

    CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotox Environ Safe 45:198–207

    CAS  Google Scholar 

  • Chasapis CT, Andreini C, Georgiopolou AK, Stefanidou ME, Vlamis-Gardikas A (2017) Identification of the zinc, copper, and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Arch Microbiol 199:1141–1149

    CAS  PubMed  Google Scholar 

  • Chaudhary A, Pasha IM, Bhakti BS, Braganca JM (2014) Cadmium tolerance by, haloarchaeal strains isolated from solar saltern of Goa, India. Int J Biosci Biochem Bioinforma 4:1–6

    Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Dammak R, Bahloul M, Chabbi I, Azri C (2016) Spatial and temporal variations of dust particle deposition at three urban/suburban areas in Sfax city (Tunisia). Environ Monit Assess 188(6):336

    PubMed  Google Scholar 

  • Das D, Salgaonkar BB, Mani K, Braganca JM (2014) Cadmium resistance in extremely halophilic archaeon Haloferax strain BBK2. Chemosphere 112:385–392

    CAS  PubMed  Google Scholar 

  • DasSarma S, Fleischmann EM, Rodriguez-Valera F (1995) Appendix 2. Media for halophiles. In: Robb FT (ed) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 225–230

    Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Nalt Acad Sci USA 89:5685–5690

    CAS  Google Scholar 

  • Enache M, Teodosiu G, Faghi AM, Dumitru L (2000) Identification of halophilic Archaebacteria isolated from some Romanian salt lakes on the basis of lipids composition. Rev Roum Biol Ser Biol Veg 45:93–99

    Google Scholar 

  • Erdogmus SF, Multu B, Korcan SF, Guven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic Archaea isolated from Camalty saltern, Turkey. Water Air Soil Pollut 224:1449–1458

    Google Scholar 

  • Gabballa A, Amer R, Hussein H, Moawad H, Sabry S (2003) Heavy metals resistance pattern of moderately halophytic bacteria. Arab J Biotech 6:267–278

    Google Scholar 

  • Huo YY, Li ZY, Cheng H, Wang CH, Xu XW (2014) High quality draft genome sequence of the heavy metal resistant bacterium Halomonas zincidurans type strain B6T. Stand Genomic Sci 9:30–39

    PubMed  PubMed Central  Google Scholar 

  • Japan International Cooperation Agency “JICA” (1993) The study on waste water treatment and recycling of selected industries in the region of Sfax in the Republic of Tunisia, JICA LIBRARY1115588

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, Diruggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    CAS  PubMed  Google Scholar 

  • Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL (2018) Diversity and niche of Archaea in bioremediation. Archaea 1–17

  • Kumar S, Stecher G, Li M, Knyaz C, Tamur K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagorce A, Fourçans A, Dutertre M, Bouyssiere B, Zivanovic Y, Confalonieri F (2012) Genome wide transcriptional response of the archaeon Thermococcus gammatolerans to cadmium. PLoS ONE 7:35–41

    Google Scholar 

  • Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3:1153–1162

    CAS  PubMed  Google Scholar 

  • Mani K, Salgaonkar BB, Braganca JM (2012) Culturable halophilic Archaea at the initial and final stages of salt production in a natural solar saltern of Goa, India. Aquat Biosyst 8:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno ML, Piubeli F, Bonfa MRL, Garcıa MT, Durrant LR, Mellado E (2012) Analysis and characterization of cultivable extremophilic hydrolytic bacterial community in heavy-metal contaminated soils from the Atacama Desert and their biotechnological potentials. J Appl Microbiol 113:550–559

    CAS  PubMed  Google Scholar 

  • Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of halobacteria to heavy metals. Appl Environ Microbiol 53:1199–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onishi H, Kobayashi T, Morita N, Baba M (1984) Effect of salt concentration on the cadmium tolerance of a moderately halophilic cadmium tolerant Pseudomonas sp. Agric Biol Chem 48:2441–2448

    CAS  Google Scholar 

  • Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematic. Int J Syst Evol Microbiol 62:263–271

    PubMed  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 1–13

  • Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic Archaea. Biotechnol Biotechnol Equip 23:791–795

    Google Scholar 

  • Raghavan TM, Furtado I (2005) Expression of carotenoid pigments of haloarchaeal cultures exposed to aniline. Environ Toxicol 20:165–169

    CAS  PubMed  Google Scholar 

  • Rios M, Nieto JJ, Ventosa A (1998) Numerical taxonomy of heavy metal-tolerant nonhalophilic bacteria isolated from hypersaline environments. Int Microbiol 1:45–51

    CAS  PubMed  Google Scholar 

  • Salgaonkar BB, Mani K, Nair A, Gangadharan S, Braganca JM (2012) Interspecific interactions among members of family Halobacteriaceae from natural solar salterns. Probiotics Antimicrob Proteins 4:98–107

    CAS  PubMed  Google Scholar 

  • Salgaonkar BB, Das D, Bragança JM (2016) Resistance of extremely halophilic Archaea to zinc and zinc oxide nanoparticles. Appl Nanosci 6:251–258

    CAS  Google Scholar 

  • Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68:447–463

    Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 1–16

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    CAS  PubMed  Google Scholar 

  • Trigui H, Masmoudi S, Brochier-Armanet C, Barani A, Grégori G, Denis M, Dukan S, Maalej S (2011) Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles 15:347–358

    PubMed  PubMed Central  Google Scholar 

  • Unz RF, Shuttleworth KL (1996) Microbial mobilization and immobilization of heavy metals. Curr Opin Biotechnol 7:307–310

    CAS  PubMed  Google Scholar 

  • Voica DM, Bartha L, Banciu H, Oren A (2016) Heavy metal resistance in halophilic Bacteria and Archaea. FEMS Microbiol Lett 363:1–8

    Google Scholar 

  • Völkel S, Fröls S, Pfeifer F (2018) Heavy metal ion stress on Halobacterium salinarum R1 planktonic cells and biofilms. Front Microbiol 9:1–14

    Google Scholar 

  • Völkel S, Hein S, Benker N, Pfeifer F, Lenz C, Losensky G (2020) How to cope with heavy metal ions: cellular and proteome-level stress response to divalent copper and nickel in Halobacterium salinarum R1 planktonic and biofilm cells. Front Microbiol 10:1–15

    Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QF, Yang WLH, Liu YL, Cao HH, Pfaffenhuemer M, Stan-Lotter H, Guo GQ (2007) Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 57:600–604

    CAS  PubMed  Google Scholar 

  • Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and bio-kinetic properties of solar saltern halobacterial strains for managing Zn2+, As2+, and Cd2+ metals. Geomicrobiol J 30:497–500

    CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng A, Alm EW, Stahl DA, Raskin L (1996) Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62:4504–4513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126

    CAS  PubMed  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Sfax solar saltern staff for allowing access to the ponds and assistance to carry out the sampling campaign. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The mention of firm names or trade products does not imply that they are endorsed or recommended by the USDA over other firms or similar products not mentioned. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

HB isolated the strain, analysed the cultivation data, extracted pigments and wrote the manuscript, MS contributed to text preparation, EA was involved in results evaluation. CD performed the phylogenetic analysis and revised the manuscript, CA and MT conceived the idea, designed the study and supervised HB and MS. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Houda Baati.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Human and animal participants

This study does not involve any human participants or animal experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baati, H., Siala, M., Azri, C. et al. Resistance of a Halobacterium salinarum isolate from a solar saltern to cadmium, lead, nickel, zinc, and copper. Antonie van Leeuwenhoek 113, 1699–1711 (2020). https://doi.org/10.1007/s10482-020-01475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-020-01475-6

Keywords

Navigation