Skip to main content
Log in

Nucleophosmin, Coilin, and Argentophilic (AgNOR) Proteins in the Neurons of Human Substantia Nigra

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The aim of the work was to study the intranuclear distribution of nucleophosmin (B23), coilin (p80), AgNOR proteins, and nonheme iron in the neurons of the human substantia nigra. Fragments of the human midbrain (n = 10) were shown to have no signs of neurodegeneration. The material was fixed in zinc–ethanol–formaldehyde, a special fixative that provides high preservation of antigenic determinants and tissue structures. This work revaled a new data on molecular and structural organization of the nucleoli of neurons in human substantia nigra. It was found that, in the nuclei of substantia nigra neurons, there is only one large nucleolus, and its size varies between individuals (from 4.2 ± 0.4 to 6.2 ± 0.6 μm in diameter). Nucleophosmin is concentrated solely in the nucleolus and is unevenly distributed in it. Cajal bodies found in the nucleus of most substantia nigra neurons are coiline-containing structures of round or oval shape and about 1 μm in size. Coilin accumulation has also been noted in numerous intranuclear microstructures, which significantly differ in their localization and morphological characteristics from typical Cajal bodies. AgNOR proteins are present in the substantia nigra neurons and are very variably distributed. Nonheme iron was detected in the nucleoli ofof some substantia nigra neurons. In some cases iron was concentrated in the giant fibrillar center (GFC). The data obtained will contribute to a clearer understanding of the role of nucleolar proteins in the functioning of dopaminergic neurons in the human brain and the determination of molecular sensors of nucleolar stress observed during neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I., and Mann, M., Nucleolar proteome dynamics, Nature, 2005, vol. 433, p. 77.

    Article  CAS  Google Scholar 

  2. Bogolyubov, D.S., Interkhromatinovye granuly – universal’nye struktury kletochnogo yadra: morfologiya, molekulyarnyi sostav, funktsii (Interchromatin Granule Clusters Are Universal Nuclear Domains: Morphology, Molecular Composition, and Functions), St. Petersburg: Nauka, 2018.

  3. Bogolyubova, I.O., Heterogeneity of coilin-containing nuclear domains in early mouse embryos, Cell Tissue Biol., 2017, vol. 11, no. 4, p. 293.

    Article  Google Scholar 

  4. Boulon, S., Westman, B.J., Hutten, S., Boisvert, F.M., and Lamond, A.I., The nucleolus under stress, Mol. Cell, 2010, vol. 40, p. 216.

    Article  CAS  Google Scholar 

  5. Casafont, I., Bengoechea, R., Navascués, J., Pena, E., Berciano, M.T., and Lafarga, M., The Giant Fibrillar Center: a Nucleolar Structure Enriched in Upstream Binding Factor (UBF) that Appears in Transcriptionally more Active Sensory Ganglia Neurons, J. Struct. Biol., 2007, vol. 159, p. 451.

    Article  CAS  Google Scholar 

  6. Chinta, S.J. and Andersen, J.K., Dopaminergic neurons, Int. J. Biochem. Cell Biol., 2005, vol. 37, p. 942.

    Article  CAS  Google Scholar 

  7. Daskal, Y., Smetana, K., and Busch, H., Evidence from studies on segregated nucleoli that nucleolar silver staining proteins C23 and B23 are in the fibrillar component, Exp. Cell Res., 1980, vol. 127, p. 285.

    Article  CAS  Google Scholar 

  8. Derenzini, M., Pasquinelli, G., O’Donohue, M., Ploton, D., and Thiry, M., Structural and functional organization of ribosomal genes within the mammalian cell nucleus, J. Histochem. Cytochem., 2006, vol. 54, p. 131.

    Article  CAS  Google Scholar 

  9. Emerit, J., Beaumont, C., and Trivin, F., Iron metabolism, free radicals, and oxidative injury, Biomed. Pharmacother., 2001, vol. 55, p. 333.

    Article  CAS  Google Scholar 

  10. Farley, K.I., Surovtseva, Y., Merkel, J., and Baserga, S.J., Determinants of mammalian nucleolar architecture, Chromosoma, 2015, vol. 124, p. 323.

    Article  CAS  Google Scholar 

  11. Finkelstein, D., Towards New Therapies for Parkinson’s Disease, Rijeka (Croatia): InTech, 2011.

    Book  Google Scholar 

  12. Geuens, E., Brouns, I., Flamez, D., Dewilde, S., Timmermans, J.P., and Moens, L., A globin in the nucleus!, J. Biol. Chem., 2003, vol. 278, p. 30417.

    Article  CAS  Google Scholar 

  13. Grigoriev, I.P., Kolos, Ye.A., Sukhorukova, Ye.G., and Korzhevskiy, D.E., Current histochemical methods of tissue iron demonstration based on Perls’ reaction, Morfologiia, 2016, vol. 149, no. 1, p. 85.

    Google Scholar 

  14. Healy-Stoffel, M., Ahmad, S.O., Stanford, J.A., and Levant, B., A novel use of combined tyrosine hydroxylase and silver nucleolar staining to determine the effects of a unilateral intrastriatal 6-hydroxydopamine lesion in the substantia nigra: a stereological study, J. Neurosci. Methods, 2012, vol. 210, p. 187.

    Article  CAS  Google Scholar 

  15. Hetman, M. and Pietrzak, M., Emerging roles of the neuronal nucleolus, Trends Neurosci., 2012, vol. 35, no. 5, pp. 305–314.

    Article  CAS  Google Scholar 

  16. Khodyuchenko, T.A. and Krasikova, A.V., Cajal bodies and histone locus bodies: Molecular composition and function, Russ. J. Dev. Biol., 2014, vol. 45, no. 6, p. 297.

    Article  CAS  Google Scholar 

  17. Koberna, K., Malinsky, K., Pliss, A., Masata, A., Vecerova, M., Fialova, M., Bednar, J., and Raška, I., Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ, J. Cell Biol., 2002, vol. 157, p. 743.

    Article  CAS  Google Scholar 

  18. Korzhevskiy, D.E., A method for detecting nucleoli in the nuclei of cells of different tissues, Arch. Anat., 1990, vol. 99, no. 12, p. 58.

    Google Scholar 

  19. Korzhevskii, D.E., Sukhorukova, E.G., Kirik, O.V., and Grigorev, I.P., Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde, Eur. J. Histochem., 2015, vol. 59, p. 2530.

    Article  CAS  Google Scholar 

  20. Korzhevskii, D.E., Gusel’nikova, V.V., Kirik, O.V., Sukhorukova, E.G., and Grigorev, I.P., The spatial organization of the intranuclear structures of human brain dopaminergic neurons, Acta Naturae, 2017, vol. V 9, no. 3, p. 81.

  21. Korzhevskii, D.E., Grigor’ev, I.P., Sukhorukova, E.G., and Gusel’nikova, V.V., Immunohistochemical characteristics of neurons in the substantia nigra of the human brain, Neurosci. Behav. Physiol., 2019, vol. 49, p. 109.

    Article  CAS  Google Scholar 

  22. Lafarga, M., Berciano, M.T., Herva’s, J.P., and Villegas, J., Nucleolar organization in granule cell neurons of the rat cerebellum, J. Neurocytol., 1989, vol. 18, p. 19.

    Article  CAS  Google Scholar 

  23. Lafarga, M., Andres, M.A., Berciano, M.T., and Maquiera, E., Organization of nucleoli and nuclear bodies in osmotically stimulated supraoptic neurons of the rat, J. Comp. Neurol., 1991, vol. 308, p. 329.

    Article  CAS  Google Scholar 

  24. Lafarga, M., Tapia, O., Romero, A.M., and Berciano, M.T., Cajal Bodies in Neurons, RNA Biol., 2017, vol. 14, p. 712.

    Article  Google Scholar 

  25. Oksova, E.E., About vacuolization of the nucleolus of neurons in the human cerebral cortex, Arch. Anat., 1972, vol. 63, no. 10, p. 33.

    CAS  Google Scholar 

  26. Parlato, R. and Liss, B., How Parkinson’s disease meets nucleolar stress, Biochim. Biophys. Acta, 2014, vol. 1842, p. 791.

    Article  CAS  Google Scholar 

  27. Pena, E., Berciano, M.T., Fernandez, R., Ojeda, J.L., and Lafarga, M., Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons, J. Comp. Neurol., 2001, vol. 430, p. 250.

    Article  CAS  Google Scholar 

  28. Pfister, J.A. and D’Mello, S.R., Insights into the regulation of neuronal viability by nucleophosmin/B23, Exp. Biol. Med. (Maywood), 2015, vol. 240, p. 774.

    Article  CAS  Google Scholar 

  29. Phair, R.D. and Misteli, T., High mobility of proteins in the mammalian cell nucleus, Nature, 2000, vol. 404, p. 604.

    Article  CAS  Google Scholar 

  30. Pleshakova, I.M., Guselnikova, V.V., Sufiyeva, D.A., and Korzhevsky, D.E., Distribution of nucleophosmine proteins (B23) and histone H4 lysine 20 (H4K20me3) in the granule cells of the rat brain cerebellum, Cell Tissue Biol., 2018, vol. 12, no. 6, p. 484.

    Article  Google Scholar 

  31. Raška, I. and Dundr, M., Compartmentalization of the cell nucleus: case of the nucleolus, Chromosome Today, 1993, vol. 11, p. 101.

    Article  Google Scholar 

  32. Raška, I., Shaw, P.J., and Cmarko, D., New insights into nucleolar architecture and activity, Int. Rev. Cytol., 2006, vol. 255, p. 177.

    Article  Google Scholar 

  33. Reinert, A., Morawski, M., Seeger, J., Arendt, T., and Reinert, T., Iron concentrations in neurons and glial cells with estimates on ferritin concentrations, BMC Neurosci., 2019, vol. 20, p. 25.

    Article  Google Scholar 

  34. Sirri, V., Urcuqui-Inchima, S., Roussel, P., and Hernandez-Verdun, D., Nucleolus: the fascinating nuclear body, Histochem. Cell Biol., 2008, vol. 129, p. 13.

    Article  CAS  Google Scholar 

  35. Sukhorukova, E.G., Grigoriev, I.P., Kirik, O.V., Alekseeva, O.S., and Korzhevskii, D.E., Intranuclear localization of iron in neurons of mammalian brain, J. Evol. Biochem. Phys., 2013, vol. 49, no. 3, p. 370.

    Article  CAS  Google Scholar 

  36. Sukhorukova, E.G., Alekseeva, O.S., and Korzhevsky, D.E., Catecholaminergic neurons of mammalian brain and neuromelanin, J. Evol. Biochem. Phys., 2014, vol. 50, no. 5, p. 383.

    Article  CAS  Google Scholar 

  37. Tapia, O., Bengoechea, R., Berciano, M.T., and Lafarga, M., Nucleolar targeting of coilin is regulated by its hypomethylation state, Chromosoma, 2010, vol. 119, p. 527.

    Article  CAS  Google Scholar 

  38. Vandelaer, M., Thiry, M., and Goessens, G., AgNOR proteins from morphologically intact isolated nucleoli, Life Sci., 1999, vol. 64, p. 2039.

    Article  CAS  Google Scholar 

  39. Youdim, M.B., Stephenson, G., and Ben Shachar, D., Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, Desferal and VK-28, Ann. N. Y. Acad. Sci., 2004, vol. 1012, p. 306.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of a state order to the Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Guselnikova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. This work was performed in accordance with ethical standards and approved by the Local Ethics Committee of the Institute of Experimental Medicine, extract from protocol no. 58–9/1-684 dated December 11–12, 2009.

Additional information

Abbreviations: DOPA—L-dioxiphenylalanine, DFC—dense fibrillar component of the nucleolus (dense fibrillar component), FC—fibrillar center of the nucleolus (fibrillar center), GC—granular component of the nucleolus (granular component), GFC–giant fibrillar center of the nucleolus (giant fibrillar center), snRNA—small nuclear RNA (small nuclear RNA), snoRNP—small nucleolar ribonucleoproteins (small nucleolar RNP), UBF—nucleolar transcription factor (upstream binding factor).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guselnikova, V.V., Sufieva, D.A. & Korzhevsky, D.E. Nucleophosmin, Coilin, and Argentophilic (AgNOR) Proteins in the Neurons of Human Substantia Nigra. Cell Tiss. Biol. 14, 380–387 (2020). https://doi.org/10.1134/S1990519X20050041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20050041

Keywords:

Navigation