Skip to main content
Log in

Structural Features of Neuro-Glio-Vascular Ensembles in the Glomeruli of the Rat Olfactory Bulb

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The glomeruli of the olfactory bulb of mammals are the primary coding elements of olfactory information. The excitation pattern produced by individual glomeruli in response to olfactory stimulation is stable and specific to certain odors. First of all, this is due to the structure of the neural circuits of the olfactory bulb. Nevertheless, there is reason to believe that auxiliary cells of the nervous system—astrocytes—play a role in the organization of the primary processing of the olfactory signal. It is known that astrocytes not only have a direct effect on synaptic activity and plasticity, but coordinate the joint work of neuronal circuits and the vascular component, forming so-called “neuro-glio-vascular ensembles” as well. In this study, we carried out a morphological study of peripheral processes and gap junctions of astrocytes in order to study the structure of neuro-glio-vascular ensembles at the level of organization of the olfactory bulb glomeruli neuropil. The study showed that the main part of the astrocytic processes inside the glomeruli is located in the area of dendro-dendritic connections of the interneurons and projection neurons of the olfactory bulb, while in the zone of the primary switching of the olfactory signal, the astrocytic processes are practically absent. We also found a pronounced imbalance in the expression of the main astroglial connexins between the different functional poles of the neuro-glio-vascular ensembles of the olfactory bulb and the presence of heterotypic contacts formed by Cx30. The functional significance of the observed features of connexins expression in the olfactory bulb has yet to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bailey, M.S. and Shipley, M.T., Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution, J. Comp. Neurol., 1993, vol. 328, p. 501.

    Article  CAS  Google Scholar 

  2. Banker, G.A., Trophic interactions between astroglial cells and hippocampal neurons in culture, Science, 1980, vol. 209, p. 809.

    Article  CAS  Google Scholar 

  3. Blinder, P., Tsai, P.S., Kaufhold, J.P., Knutsen, P.M., Suhl, H., and Kleinfeld, D., The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow, Nat. Neurosci., 2013, vol. 16, p. 889.

    Article  CAS  Google Scholar 

  4. Eilam, R., Aharoni, R., Arnon, R., and Malach, R., Astrocyte morphology is confined by cortical functional boundaries in mammals ranging from mice to human, Elife, 2016, vol. 5. e15915.

    Article  Google Scholar 

  5. Griemsmann, S., Höft, S.P., Bedner, P., Zhang, J., Von Staden, E., Beinhauer, A., Degen, J., Dublin, P., Cope, D.W., Richter, N., Crunelli, V., Jabs, R., Willecke, K., Theis, M., et al., Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells, Cerebral Cortex, 2015, vol. 25, p. 3420.

    Article  Google Scholar 

  6. Guerra-Gomes, S., Sousa, N., Pinto, L., and Oliveira, J.F., Functional roles of astrocyte calcium elevations: from synapses to behavior, Front. Cell Neurosci., 2017, vol. 11, p. 427.

    Article  Google Scholar 

  7. Houades, V., Koulakoff, A., Ezan, P., Seif, I., and Giaume, C., Gap junction-mediated astrocytic networks in the mouse barrel cortex, J. Neurosci., 2008, vol. 28, p. 5207.

    Article  CAS  Google Scholar 

  8. Kamasawa, N., Sik, A., Morita, M., Yasumura, T., Davidson, K.G.V., Nagy, J.I., and Rash, J.E., Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and schmidt-lanterman incisures: implications for ionic homeostasis and potassium siphoning, Neuroscience, 2005, vol. 136, p. 65.

    Article  CAS  Google Scholar 

  9. Kasowski, H.J., Kim, H., and Greer, C.A., Compartmental organization of the olfactory bulb glomerulus, J. Comp. Neurol., 1999, vol. 407, p. 261.

    Article  CAS  Google Scholar 

  10. Kirichenko, E.Y., Logvinov, A.K., Filippova, S.Y., Povilaytite, P.E., and Kirichenko, Y.G., Gap junctions in the composition of neurogliovascular ensembles in rat cortical barrel columns, Cell Tissue Biol., 2018, vol. 12, no. 6, p. 477.

    Article  Google Scholar 

  11. Leithe, E., Mesnil, M., and Aasen, T., The connexin 43 C‑terminus: a tail of many tales, Biochim. Biophys. Acta, 2018, vol. 1860, p. 48.

    Article  CAS  Google Scholar 

  12. Linster, C. and Cleland, T.A., Glomerular microcircuits in the olfactory bulb, Neural. Netw., 2009, vol. 22, p. 1169.

    Article  Google Scholar 

  13. Mansour, H., McColm, J.R., Cole, L., Weible, M., 2nd, Korlimbinis, A., and Chan-Ling T., Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina, PLoS One, 2013, vol. 8, p. e57038.

    Article  CAS  Google Scholar 

  14. Nagayama, S., Homma, R., and Imamura, F., Neuronal organization of olfactory bulb circuits, Front. Neural. Circuits, 2014, vol. 8, p. 98.

    Article  Google Scholar 

  15. Nagy, J.I., Patel, D., Ochalski, P.A.Y., and Stelmack, G.L., Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin 43 at gap junction and late developmental appearance, Neuroscience, 1999, vol. 88, p. 447.

    Article  CAS  Google Scholar 

  16. Nielsen, M.S., Axelsen, L.N., Sorgen, P.L., Verma, V., Delmar, M., and Holstein-Rathlou N.H., Gap junctions, Compr. Physiol., 2012, vol. 2, p. 1981.

    PubMed  Google Scholar 

  17. Orthmann-Murphy, J.L., Freidin, M., Fischer, E., Scherer, S.S., and Abrams, C.K., Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins, J. Neurosci., 2007, vol. 27, p. 13949.

    Article  CAS  Google Scholar 

  18. Pannasch, U., Connexin 30 sets synaptic strength by controlling astroglial synapse invasion, Nat. Neurosci., 2014, vol. 17, p. 549.

    Article  CAS  Google Scholar 

  19. Pérez-Alvarez, A. and Araque, A., Astrocyte-neuron interaction at tripartite synapses, Curr. Drug Targets, 2013, vol. 14, p. 1220.

    Article  Google Scholar 

  20. Rash, J.E., Yasumura, T., Davidson, K.G.V., Furman, C.S., Dudek, F.E., and Nagy, J.I., Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord, Cell Comm. Adhes., 2001, vol. 8, p. 315.

    Article  CAS  Google Scholar 

  21. Ressler, K.J., Sullivan, S.L., and Buck, L.B., Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb, Cell, 1994, vol. 79, p. 1245.

    Article  CAS  Google Scholar 

  22. Roux, L., Benchenane, K., Rothstein, J.D., Bonvento, G., and Giaume, C., Plasticity of astroglial networks in olfactory glomeruli, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, p. 18442.

    Article  CAS  Google Scholar 

  23. Savtchouk, I. and Volterra, A., Gliotransmission: beyond black-and-white, J. Neurosci., 2018, vol. 38, p. 14.

    Article  CAS  Google Scholar 

  24. Wachowiak, M., Denk, W., and Friedrich, R.W., Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, p. 9097.

    Article  CAS  Google Scholar 

  25. Zeinieh, M.P., Talhouk, R.S., El-Sabban, M.E., and Mikati, M.A., Differential expression of hippocampal connexins after acute hypoxia in the developing brain, Brain Dev., 2010, vol. 32, p. 810.

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Foundation for Basic Research, project no. 19-015-00325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Filippova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Animal keeping and experimental studies were carried out in accordance with the protocol approved by the Bioethics Commission of Southern Federal University on April 18, 2012.

Additional information

Abbreviations: OB—olfactory bulb, NGVE—euro-glio-vascular ensemble, GJ—gap junction; GFAP—glial fibrillar acidic protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirichenko, E.Y., Logvinov, A.K., Filippova, S.Y. et al. Structural Features of Neuro-Glio-Vascular Ensembles in the Glomeruli of the Rat Olfactory Bulb. Cell Tiss. Biol. 14, 372–379 (2020). https://doi.org/10.1134/S1990519X20050053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20050053

Keywords:

Navigation