Skip to main content
Log in

Synthesis, Characterization, and Antibacterial Activity of Cd(II) Complexes with 3-/4-Fluorobenzoates and 3-Hydroxypiridine as Co-Ligands

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, two new complexes of Cd(II) 4-fluorobenzoate (4-FB)/3-fluorobenzoate (3-FB) with 3-hydroxypyridine (3-HPY) have been synthesized and structural characterizations have been performed by using elemental analysis, FT-IR spectroscopy, and single-crystal X-ray diffraction methods. In both complexes, the metal atom is chelated by two carboxylate groups from two 4- or 3-fluorobenzoate anions and coordinated by two 3-hydroxypyridine (HPY) molecules. In both complexes, an oxygen atom of carboxylate from the adjacent anion bridges to the Cd atom, completing the distorted seven-coordination geometry. The only difference between complexes is the positions of fluorine atoms in fluorobenzoic acids (4-fluorobenzoic acid (complex 1) and 3-fluorobenzoic acid (complex 2)). Antibacterial resistance of two new complexes to some bacteria has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Noro, H. Miyasaka, S. Kitagawa, et al. Inorg. Chem. 44, 133 (2005). https://doi.org/10.1021/ic049550e

    Article  CAS  PubMed  Google Scholar 

  2. P. Teo and T. S. A. Hor, Coord. Chem. Rev. 255, 273 (2011). https://doi.org/10.1016/j.ccr.2010.08.014

    Article  CAS  Google Scholar 

  3. T. Güdüz, Koordinasyon Kimyası (Gazi Kitabevi, Ankara, 2005).

    Google Scholar 

  4. K. Yamada, S. Yagishita, H. Tanaka, et al., Chem. Weinh. Bergstr. Ger. 10, 2647 (2004). https://doi.org/10.1002/chem.200305640

    Article  CAS  Google Scholar 

  5. M. Salehi, M. Galini, M. Kubicki, and A. Khaleghian, Russ. J. Inorg. Chem. 64, 18 (2019). https://doi.org/10.1134/S0036023619010170

    Article  CAS  Google Scholar 

  6. X. W. Zhu, Russ. J. Coord. Chem. 45, 608 (2019). https://doi.org/10.1134/S1070328419080104

    Article  CAS  Google Scholar 

  7. M. Rezaeiyala, R. Golbedaghi, M. Khalili, et al., Russ. J. Coord. Chem. 45, 142 (2019). https://doi.org/10.1134/S1070328419020064

    Article  Google Scholar 

  8. V. Uivarosi, Molecules 18, 11153 (2013). https://doi.org/10.3390/molecules180911153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Rizzotto, Search Antibact. Agents (2012). https://doi.org/10.5772/45651

  10. N. Abdolhi, M. Aghaei, A. Soltani, et al., J. Struct. Chem. 60, 845 (2019). https://doi.org/10.1134/S0022476619050196

    Article  CAS  Google Scholar 

  11. C. Kantar, B. Kaya, M. Turk, and S. Sasmaz, J. Struct. Chem. 59, 1241 (2018). https://doi.org/10.1134/S0022476618050335

    Article  CAS  Google Scholar 

  12. B. Jabali and H. Abu Ali, Polyhedron 117, 249 (2016). https://doi.org/10.1016/j.poly.2016.06.003

    Article  CAS  Google Scholar 

  13. R. Spector and C. E. Johanson, J. Neurochem. 103, 425 (2007). https://doi.org/10.1111/j.1471-4159.2007.04773.x

    Article  CAS  PubMed  Google Scholar 

  14. J. Zempleni, J. W. Suttie, J. F. G. Iii, et al., Handbook of Vitamins (CRC Press, 2013). https://doi.org/10.1201/b15413

  15. T. Dang, I. S. Nizamov, R. Z. Salikhov, et al., Bioorg. Med. Chem. 27, 100 (2019). https://doi.org/10.1016/j.bmc.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  16. S. A. Waksman, Mycologia 39, 565 (1947).

    Article  CAS  Google Scholar 

  17. S. B. Singh, K. Young, and L. L. Silver, Biochem. Pharmacol. 133, 63 (2017). https://doi.org/10.1016/j.bcp.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  18. J.-M. Rolain, C. Abat, M.-T. Jimeno, et al., Clin. Microbiol. Infect. 22, 408 (2016). https://doi.org/10.1016/j.cmi.2016.03.012

    Article  PubMed  Google Scholar 

  19. R. Kumar, P. Kumar, M. Kumar, and B. Narasimhan, Med. Chem. Res. 21, 4301 (2012). https://doi.org/10.1007/s00044-011-9954-0

    Article  CAS  Google Scholar 

  20. K. Gould, J. Antimicrob. Chemother. 71, 572 (2016). https://doi.org/10.1093/jac/dkv484

    Article  CAS  PubMed  Google Scholar 

  21. F. Tabak, in I.Ü. CerrahpasaTıp Fakültesi Sürekli Tıp Egitimi Etkinlikleri (İstanbul, 2002), p. 101.

  22. E. Tacconelli, E. Carrara, A. Savoldi, et al., Lancet Infect. Dis. 18, 318 (2018). https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  23. L. B. Rice, Biochem. Pharmacol. 71, 991 (2006). https://doi.org/10.1016/j.bcp.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  24. I. A. Holder and S. T. Boyce, Burns 20, 426 (1994). https://doi.org/10.1016/0305-4179(94)90035-3

    Article  CAS  PubMed  Google Scholar 

  25. C. Pérez, M. Pauli, P. Bazerque, C. Perez-Eid, and W.M. Pauli, P. Bazerque (Publication date). Journal: Acta Biologiaeet Medecine Experimentaalis 15, 113 (1990).

  26. A. Lapasam, V. Banothu, U. Addepally, and M. R. Kollipara, J. Mol. Struct. 1191, 314 (2019). https://doi.org/10.1016/j.molstruc.2019.04.116

    Article  CAS  Google Scholar 

  27. C. E. Satheesh, P. R. Kumar, N. Shivakumar, et al., Inorg. Chim. Acta 495, UNSP 118929 (2019). https://doi.org/10.1016/j.ica.2019.05.028

  28. M. Sertçelik, F. E. Özbek, S. Sugeçti̇, and H. Necefoğlu, Iğdır Üniv. Fen Bilim. Enstitüsü Derg. 8, 189 (2018). https://doi.org/10.21597/jist.408109

    Article  Google Scholar 

  29. D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. A. Vyvyan, Introduction to Spectroscopy (Cengage Learning, 2008).

    Google Scholar 

  30. F. E. Ozbek, M. Sertcelik, M. Yuksek, et al., J. Coord. Chem. 72, 786 (2019). https://doi.org/10.1080/00958972.2019.1590560

    Article  CAS  Google Scholar 

  31. B. Dojer, A. Pevec, Z. Jagličić, and M. Kristl, J. Mol. Struct. 1128, 724 (2017). https://doi.org/10.1016/j.molstruc.2016.09.023

    Article  CAS  Google Scholar 

  32. T. Hökelek, E. G. Sağlam, B. Tercan, et al., Acta Crystallogr. Sect. E Struct. Rep. Online 66, m1559 (2010). https://doi.org/10.1107/S1600536810046258

    Article  CAS  Google Scholar 

  33. T. Hökelek, Y. Süzen, B. Tercan, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online 66, m782 (2010). https://doi.org/10.1107/S160053681002163X

    Article  CAS  Google Scholar 

  34. T. Hökelek, F. Yılmaz, B. Tercan, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online 65, m1416 (2009). https://doi.org/10.1107/S1600536809042640

    Article  CAS  Google Scholar 

  35. T. Hökelek, H. Dal, B. Tercan, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online 65, m627 (2009). https://doi.org/10.1107/S1600536809016602

    Article  CAS  Google Scholar 

  36. T. Hökelek, H. Dal, B. Tercan, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online 65, m1037 (2009). https://doi.org/10.1107/S1600536809027093

    Article  CAS  Google Scholar 

  37. T. Hökelek, H. Dal, B. Tercan, et al., Acta Crystallogr., Sect. E: Struct. Rep. Online 65, m1365 (2009). https://doi.org/10.1107/S1600536809041208

    Article  CAS  Google Scholar 

  38. T. Hökelek and H. Necefouglu, Acta Crystallogr., Sect. C 52, 1128 (1996). https://doi.org/10.1107/S0108270195015976

    Article  Google Scholar 

  39. F. T. Greenaway, A. Pezeshk, A. W. Cordes, et al., Inorg. Chim. Acta 93, 67 (1984). https://doi.org/10.1016/S0020-1693(00)87890-1

    Article  CAS  Google Scholar 

  40. J. Bernstein, R. E. Davis, L. Shimoni, and N.-L. Chang, Angew. Chem. Int. Ed. Engl. 34, 1555 (1995). https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  41. D. C. Onwudiwe, Y. B. Nthwane, A. C. Ekennia, and E. Hosten, Inorg. Chim. Acta 447, 134 (2016). https://doi.org/10.1016/j.ica.2016.03.033

    Article  CAS  Google Scholar 

  42. S. M. H. Al-Majidi, J. Saudi Chem. Soc. 18, 893 (2014). https://doi.org/10.1016/j.jscs.2011.11.008

    Article  Google Scholar 

  43. APEX2, SAINT and SADABS (Bruker, Madison, 2009).

    Google Scholar 

  44. G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  45. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012). https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  46. A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 65, 148 (2009). https://doi.org/10.1107/S090744490804362X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Tuncer HÖKELEK, Hacali NECEFOĞLU and F.Elif ÖZTÜRKKAN for the X-ray analysis and helpful discussions. This article was obtained from the master thesis of Murat Durman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Sertçelik.

Ethics declarations

The authors declare no conflict of interests.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa Sertçelik, Murat Durman Synthesis, Characterization, and Antibacterial Activity of Cd(II) Complexes with 3-/4-Fluorobenzoates and 3-Hydroxypiridine as Co-Ligands. Russ. J. Inorg. Chem. 65, 1351–1359 (2020). https://doi.org/10.1134/S0036023620090168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090168

Keywords:

Navigation