Skip to main content
Log in

Preparation of CdS and CdS@Zn3(PO4)2 Nanocomposites by Sol-Gel Method: DFT Study and Effect of Temperature on Band Gap

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A simple chemical route of sol gel method has been followed to synthesize cadmium sulphide (CdS) nanoparticles and cadmium sulphide@zincphosphate (CdS@Zn3(PO4)2 nanocomposites. The structural, morphological, and optical studies have been carried out by using X-ray powder diffraction, FESEM, TEM, PL, UV and CIE graphs. A density functional theory (DFT) study has also been done to compare the experimental and theoretical data. The obtained results show that both the results are in good agreement as they follow the same trend towards the band gap calculations. Moreover, EDS and FTIR techniques have been used to obtain information about the elemental composition and functional groups associated with the synthesized nanoparticles. CdS@Zn3(PO4)2 nanocomposites overcome the problem of agglomeration which is generally associated with CdS nanoparticles. PL of synthesized nanocomposites shows white emission whereas reddish emission is shown by CdS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. P. Reiss, M. Protiere, and L. Li, Small 5, 154 (2009). https://doi.org/10.1002/smll.200800841

    Article  CAS  PubMed  Google Scholar 

  2. S. Arya, Prerna, A. Singh, and R. Kour, Mater. Res. Express 6, 116313 (2010). https://doi.org/10.1088/2053-1591/ab49ab

    Article  Google Scholar 

  3. R. Bhattacharya, T. K. Das, and S. Saha, J. Mater. Sci.: Mater. Electron. 22, 1761 (2011). https://doi.org/10.1007/s10854-011-0359-0

    Article  CAS  Google Scholar 

  4. I. S. Elashmawi, A. M. Abdelghany, and N. A. Hakeem, J. Mater. Sci.: Mater. Electron. 24, 2956 (2013). https://doi.org/10.1007/s10854-013-1197-z

    Article  CAS  Google Scholar 

  5. C. B. Murray, D. J. Noms, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). https://doi.org/10.1021/ja00072a025

    Article  CAS  Google Scholar 

  6. M. Y. Koroleva, E. V. Gulyaeva, and E. V. Yurtov, Russ. J. Inorg. Chem. 57, 320 (2012). https://doi.org/10.1134/S0036023612030151

    Article  CAS  Google Scholar 

  7. F. Antolini, M. Pentimalli, T. D. Luccio, et al., Mater Lett. 59, 3181 (2005). https://doi.org/10.1016/j.matlet.2005.05.047

    Article  CAS  Google Scholar 

  8. J. Cao, J. Sun, J. Hong, et al., Adv. Mater. 16, 84 (2004). https://doi.org/10.1002/adma.200306100

    Article  CAS  Google Scholar 

  9. S. G. Kumar and K. S. R. K. Rao, En. Environ Sci. 7, 45 (2014). https://doi.org/10.1039/C3EE41981A

    Article  CAS  Google Scholar 

  10. C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, Science, 276, 398 (1997). https://doi.org/10.1126/science.276.5311.398

    Article  CAS  PubMed  Google Scholar 

  11. I. S. Elashmawi, A. M. Ab, and N. A. Hakeem, J. Mater. Sci.: Mater. Electron., 24, 2956 (2013). https://doi.org/10.1007/s10854-013-1197-z

    Article  CAS  Google Scholar 

  12. S. C. Masikane, S. Mlowe, A. S. Pawar, et al., Russ. J. Inorg. Chem. 64, 1063 (2019). https://doi.org/10.1134/S0036023619080072

    Article  CAS  Google Scholar 

  13. P. Mahajan, A. Singh, and S. Arya, J. Alloys Compd. 814, 152292 (2020) https://doi.org/10.1016/j.jallcom.2019.152292

    Article  CAS  Google Scholar 

  14. B. Singh, S. Arya, A. Sharma, et al., J. Mater. Sci: Mater. Electron. 31, 65 (2020) https://doi.org/10.1007/s10854-019-01095-5

    Article  CAS  Google Scholar 

  15. O. V. Sedelnikova, C. P. Ewels, L. G. Bulusheva, and A. V. Okotrub, J. Struct. Chem. 59, 870 (2018). https://doi.org/10.1134/S0022476618040182

    Article  CAS  Google Scholar 

  16. B. Girginer, G. Galli, E. Chiellini, and N. Bicak, Int. J. Hydrogen Energy 34, 1176 (2009). https://doi.org/10.1016/j.ijhydene.2008.10.086

    Article  CAS  Google Scholar 

  17. M. Lahav and L. Leiserowitz, Chem. Eng. Sci. 56, 2245 (2001). https://doi.org/10.1016/S0009-2509(00)00459-0

    Article  CAS  Google Scholar 

  18. M. A. L. Quintela and J. Rivas, J. Colloid Interface Sci. 158, 446 (1993). https://doi.org/10.1006/jcis.1993.1277

    Article  Google Scholar 

  19. H. Nariai, S. Shibamoto, H. Maki, and I. Motooka, Phosphorus Res. Bull. 8, 101 (1998). https://doi.org/10.3363/prb1992.8.0_101

    Article  CAS  Google Scholar 

  20. H. Onoda, H. Nariai, A. Moriwaki, et al., J. Mater. Chem. 12, 1754 (2002) https://doi.org/10.1039/B110121H

    Article  CAS  Google Scholar 

  21. M. Dinamani and P. Vishnukamath, Mater. Res. Bull. 36, 2043 (2001). https://doi.org/10.1016/S0025-5408(01)00682-1

    Article  CAS  Google Scholar 

  22. S. Neeraj, C. N. R. Rao, and A. K. Cheetham, J. Mater. Chem. 14, 814 (2004). https://doi.org/10.1039/B311529A

    Article  CAS  Google Scholar 

  23. M. Yang, J. Yu, L. Shi, P. Chen, et al., Chem. Mater. 18, 476 (2006). https://doi.org/10.1021/cm052170m

    Article  CAS  Google Scholar 

  24. B. D. Romagnoli, V. F. Vetere, and L. S. Hernandez, Prog. Org. Coat. 33, 28 (1998). https://doi.org/10.1016/S0300-9440(97)00124-0

    Article  Google Scholar 

  25. B. Czarnecka and J. W. Nicholson, J. Mater. Sci. Mater. Med. 14, 601 (2003). https://doi.org/10.1023/A:1024018923186

    Article  CAS  PubMed  Google Scholar 

  26. L. Li, C. X. Qin, Z. You, and G. C. Xin, T. Nonferr. Metal Soc. 22, 373 (2012). https://doi.org/10.1016/S1003-6326(11)61186-2

    Article  CAS  Google Scholar 

  27. M. Ferhi, K. F. Horchani, and M. Rid, J. Lumin. 128, 1777 (2008). https://doi.org/10.1016/j.jlumin.2008.04.014

  28. G. Rui, Q. Dong, and L. Wei, T. Nonferr. Metal. Soc. 20, 432 (2010). https://doi.org/10.1016/S1003-6326(09)60158-8

    Article  CAS  Google Scholar 

  29. J. Liu, C. Zhao, Z. Li, et al., J. Alloy Compd. 509, 9428 (2011). https://doi.org/10.1016/j.jallcom.2011.07.002

    Article  CAS  Google Scholar 

  30. S. M. Liu, H. Q. Guo, Z. H. Zhang, et al., Physica E 8, 174 (2000). https://doi.org/10.1016/S1386-9477(99)00260-X

    Article  Google Scholar 

  31. M. A. Malik, P. O. Brien, and N. Revaprasadu, Chem. Mater. 14, 2004 (2002). https://doi.org/10.1021/cm011154w

    Article  CAS  Google Scholar 

  32. F. Li, Y. Jiang, L. Hu, et al., J. Alloy Compd. 474, 531 (2009). https://doi.org/10.1016/j.jallcom.2008.06.149

    Article  CAS  Google Scholar 

  33. R. G. Xie, U. Kolb, J. X. Li, et al., J. Am. Chem. Soc. 127, 7480 (2005). https://doi.org/10.1021/ja042939g

    Article  CAS  PubMed  Google Scholar 

  34. J. F. A. Oliveira, T. M. Milao, V. D. Araujo, et al., J. Alloy Compd. 509, 6880 (2011). https://doi.org/10.1016/j.jallcom.2011.03.171

    Article  CAS  Google Scholar 

  35. C. Nasr, S. Hotchandani, W. Y. Kim, et al., J. Phys. Chem. B 101, 7480 (1997). https://doi.org/10.1021/jp970833k

    Article  CAS  Google Scholar 

  36. S. S. Davis, Trends Biotechnol. 15, 217 (1997). https://doi.org/10.1016/S0167-7799(97)01036-6

    Article  CAS  PubMed  Google Scholar 

  37. N. V. Hullavarad and S. S. Hullavarad, Photonics Nanostruct. 15, 156 (2007). https://doi.org/10.1016/j.photonics.2007.03.001

    Article  Google Scholar 

  38. B. I. Lee, W. D. Samuels, L. Q. Wang, and G. J. Exarhos, ‎J. Mater. Res. 13, 134 (1996). https://doi.org/10.1557/JMR.1996.0017

    Article  Google Scholar 

  39. T. Zhai, Z. Gu, H. Zhong, et al., Cryst. Growth Des. 7, 488 (2007). https://doi.org/10.1021/cg0608514

    Article  CAS  Google Scholar 

  40. J. K. Dongre, V. Nogriya, and M. Ramrakhiani, Appl. Surf. Sci. 255, 6115 (2009). https://doi.org/10.1016/j.apsusc.2009.01.064

    Article  CAS  Google Scholar 

  41. A. Phuruangrat, T. Thongtem, and S. Thongtem, Mater. Lett. 63, 1562 (2009). https://doi.org/10.1016/j.matlet.2009.04.020

    Article  CAS  Google Scholar 

  42. A. Tang, F. Teng, Y. Hou, et al., Appl. Phys. Lett. 96, 163112 (2010). https://doi.org/10.1063/1.3402770

    Article  CAS  Google Scholar 

  43. S. J. Ikhmayies and R. N. A. Bitar, Appl. Surf. Sci. 255, 8470 (2009). https://doi.org/10.1016/j.apsusc.2009.05.165

    Article  CAS  Google Scholar 

  44. N. Badera, B. Godbole, S. B. Srivastava, et al., Appl. Surf. Sci. 254, 7042 (2008). https://doi.org/10.1016/j.apsusc.2008.05.218

    Article  CAS  Google Scholar 

  45. E. Caponetti, D. C. Martino, M. Leone, et al., J. Colloid Interface Sci. 304, 413 (2006). https://doi.org/10.1016/j.jcis.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  46. F. Atay, V. Bilgin, I. Akyuz, and S. Kose, Mater. Sci. Semicond. Process. 6, 197 (2003). https://doi.org/10.1016/S1369-8001(03)00085-4

    Article  CAS  Google Scholar 

  47. R. Amutha, M. Muruganandham, G. J. Lee, and J. J. Wu, J. Nanosci. Nanotechnol. 11, 7940 (2011). https://doi.org/10.1166/jnn.2011.4738

    Article  CAS  PubMed  Google Scholar 

  48. M. S. Niasari, M. R. L. estarki, and F. Davar, Chem. Eng. J. 145, 346 (2008). https://doi.org/10.1016/j.cej.2008.08.040

    Article  CAS  Google Scholar 

  49. Z. R. Khan, M. Zulfikar, and M. S. Khan, J. Mater. Sci. 46, 5412 (2011). https://doi.org/10.1007/s10853-011-5481-0

    Article  CAS  Google Scholar 

  50. A. Sharma, S. Arya, B. Singh, et al., Integr. Ferroelectr. 205, 14 (2020). https://doi.org/10.1080/10584587.2019.1674993

    Article  CAS  Google Scholar 

  51. W. Wang, I. Germanenko, and M. S. Shall, Chem. Mater. 14, 3028 (2002). https://doi.org/10.1021/cm020040x

    Article  CAS  Google Scholar 

  52. M. Shao, Q. Li, L. Kong, et al., J. Phys. Chem. Solids 64, 1147 (2003). https://doi.org/10.1016/S0022-3697(03)00041-6

    Article  CAS  Google Scholar 

  53. S. Arya, A. Sharma, B. Singh, et al., Opt. Mater. 79, 115 (2018). https://doi.org/10.1016/j.optmat.2018.03.035

    Article  CAS  Google Scholar 

  54. S. P. Yan, W. He, and C. Y. Sun, Dyes Pigm. 80, 254 (2009). https://doi.org/10.1016/j.dyepig.2008.06.010

    Article  CAS  Google Scholar 

  55. J. Du, B. Jiang, J. Xie, and X. Zeng, J. Dispersion Sci. Technol. 22, 529 (2001). https://doi.org/10.1081/DIS-100107751

    Article  CAS  Google Scholar 

  56. D. P. S. Negi and T. I. Chanu, Nanotechnology 19, 465503 (2008). https://doi.org/10.1088/0957-4484/19/46/465503

    Article  CAS  PubMed  Google Scholar 

  57. S. N. Rasool, L. R. Moorthy, and C. K. Jayasankar, Solid State Sci. 22, 82 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.05.013

    Article  CAS  Google Scholar 

  58. A. G. Chynoweth and W. G. Schneider, J. Chem. Phys. 22, 1021 (1954). https://doi.org/10.1063/1.1740255

    Article  CAS  Google Scholar 

  59. A. K. Ambast, J. Goutam, S. Som, and S. K. Sharma, Spectrochim. Acta A 122, 93 (2014). https://doi.org/10.1016/j.saa.2013.11.032

    Article  CAS  Google Scholar 

  60. G. Socrates, Infrared Characteristic Group Frequencies (Wiley, New York (1994).

    Google Scholar 

  61. N. Ghows and M.H. Entezari, Ultrason. Sonochem. 18, 269 (2011). https://doi.org/10.1016/j.ultsonch.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  62. M. Zhang, J. K. Liu, R. Miao, et al., Nanoscale Res. Lett. 5, 675 (2010). https://doi.org/10.1007/s11671-010-9530-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Y. W. Cheng, F. L. Tang, H. T. Xue, et al., Mater. Sci. Semicond. Process. 45, 9 (2016). https://doi.org/10.1016/j.mssp.2016.01.012

    Article  CAS  Google Scholar 

  64. P. Kumar, H. K. Malik, A. Ghosh, et al., Appl. Phys. Lett. 102, 221903 (2013). https://doi.org/10.1063/1.4809575

    Article  CAS  Google Scholar 

  65. S. S. Nair, M. Mathews, and M. R. Anantharaman, Chem. Phys. Lett. 406, 398 (2005). https://doi.org/10.1016/j.cplett.2005.02.107

    Article  CAS  Google Scholar 

  66. M. F. Kuhaili, M. Saleem, and S. M. Durrani, J. Alloys Compd. 521, 178 (2012). https://doi.org/10.1016/j.jallcom.2012.01.115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arya.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandeep Arya, Sharma, A., Singh, A. et al. Preparation of CdS and CdS@Zn3(PO4)2 Nanocomposites by Sol-Gel Method: DFT Study and Effect of Temperature on Band Gap. Russ. J. Inorg. Chem. 65, 1424–1435 (2020). https://doi.org/10.1134/S0036023620090016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090016

Keywords:

Navigation