Skip to main content
Log in

Features of Synthesis and Magnetic Characteristics of Yttrium Orthoferrite Produced by Gel Combustion

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of an organic fuel on the combustion mode, features of combustion, and the phase composition of the end product of the synthesis of yttrium orthoferrite was studied. It was shown that the production of YFeO3 requires a fuel that favors the formation of a single polymer metal-containing complex determining the gel structure and ensures the combustion in an intense self-sustaining mode. Yttrium orthoferrite was synthesized by gel combustion using a mixture of citric acid and ammonium nitrate as a fuel. The unit cell parameters of orthorhombic (space group Pnma) yttrium orthoferrite were found to be a = 5.594(2) Å, b = 7.604(3) Å, c = 5.282(1) Å, and V = 224.7(3) Å3. The temperature dependence of the specific magnetization of YFeO3 in the range 80–800 K was investigated. The temperature of the magnetic phase transformation magnetic order–magnetic disorder was determined to be TC ~ 620 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. V. Coutinho, F. Cunha, and P. Barrozo, Solid State Commun. 252, 59 (2017). https://doi.org/10.1016/j.ssc.2017.01.019

    Article  CAS  Google Scholar 

  2. M. Mansournia and M. Orae, J. Rare Earths 36, 1292 (2018). https://doi.org/10.1016/j.jre.2018.05.011

    Article  CAS  Google Scholar 

  3. L. Suthar, V. K. Jha, F. Bhadala, et al., Appl. Phys. A 123, 668 (2017). https://doi.org/10.1007/s00339-017-1272-z

    Article  CAS  Google Scholar 

  4. B. S. Nagrare, S. S. Kekade, B. Thombare, et al., Solid State Commun. 280, 32 (2018). https://doi.org/10.1016/j.ssc.2018.06.004

    Article  CAS  Google Scholar 

  5. O. Rosales-Gonzalez, F. Sanchez, C. A. Cortes-Escobedo, et al., Ceram. Int. 44, 15298 (2018). https://doi.org/10.1016/j.ceramint.2018.05.175

    Article  CAS  Google Scholar 

  6. M. T. Wang, S. Wang, H. Songa, et al., Ceram. Int. 43, 10270 (2017). https://doi.org/10.1016/j.ceramint.2017.05.056

    Article  CAS  Google Scholar 

  7. M. V. Chetkin, Y. N. Kurbatova, T. B. Shapaeva, et al., Phys. Lett. A 337, 235 (2005). https://doi.org/10.1016/j.physleta.2004.11.064

    Article  CAS  Google Scholar 

  8. Y. S. Didosyan, H. Hauser, J. Nicolics, et al., J. Appl. Phys. 87, 7079 (2000). https://doi.org/10.1063/1.372937

    Article  CAS  Google Scholar 

  9. V. V. Randoshkin and A. Ya. Chervonenkis, Applied Magnetooptics (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  10. V. I. Popkov, O. V. Almjasheva, A. S. Semenova, et al., J. Mater. Sci.: Mater. Electron. 28, 7163 (2017). https://doi.org/10.1007/s10854-017-6676-1

    Article  CAS  Google Scholar 

  11. M. Shang, C. Zhang, T. Zhang, et al., Appl. Phys. Lett. 102, 062903 (2013). https://doi.org/10.1063/1.4791697

    Article  CAS  Google Scholar 

  12. P. Tang, H. Sun, H. Chen, et al., Curr. Nanosci. 8, 64 (2012). https://doi.org/10.2174/1573413711208010064

    Article  CAS  Google Scholar 

  13. S. Mathur, M. Veith, R. Rapalaviciute, et al., Chem. Mater. 16, 1906 (2004). https://doi.org/10.1021/cm0311729

    Article  CAS  Google Scholar 

  14. M. N. Smirnova, L. V. Goeva, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1301 (2016). https://doi.org/10.1134/S0036023616100193

    Article  CAS  Google Scholar 

  15. M. N. Smirnova, M. A. Kop’eva, E. N. Beresnev, et al., Russ. J. Inorg. Chem. 63, 439 (2018).

    Article  CAS  Google Scholar 

  16. M. N. Smirnova, G. E. Nikiforova, L. V. Goeva, et al., Ceram. Int. 45, 4509 (2019). https://doi.org/10.1134/S0036023618040198

  17. W. Chen, F. Li, J. Yu, et al., Mater. Res. Bull. 41, 2318 (2006). https://doi.org/10.1016/j.materresbull.2006.04.024

    Article  CAS  Google Scholar 

  18. A. N. Guseva, Methods of Production of Nanosized Materials (UrGU, Ekaterinburg, 2007) [in Russian].

  19. K. I. Yanushkevich, System for Ensuring the Uniformity of Measurement of the Republic of Belarus (Minsk, 2009) [in Russian].

    Google Scholar 

  20. I. V. Lisnevskaya, I. A. Bobrova, and T. G. Lupeiko, Russ. J. Inorg. Chem. 60, 437 (2015). https://doi.org/10.1134/S0036023615040130

    Article  CAS  Google Scholar 

  21. V. F. Mazanko, A. V. Pokoev, V. M. Mironov, et al., Diffusion Processes in Metals and Alloys under the Action of Magnetic Fields and Pulsed Deformations (Mashinostroenie-1, Moscow, 2006), Vol. 1 [in Russian].

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 19-08-00643 and 18-29-110026). The studies in this work were made using the equipment of the Shared Equipment Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, under a state assignment for basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ketsko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketsko, V.A., Smirnova, M.N., Kop’eva, M.A. et al. Features of Synthesis and Magnetic Characteristics of Yttrium Orthoferrite Produced by Gel Combustion. Russ. J. Inorg. Chem. 65, 1287–1291 (2020). https://doi.org/10.1134/S0036023620090065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090065

Keywords:

Navigation