Skip to main content
Log in

Theoretical Models of Chemical Bond in Molten Binary Cadmium and Zinc Antimonides in AIIBV Semiconductors

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A complex approach to the short-range ordering in molten binary cadmium and zinc antimonides has been proposed which considers specific features of the fine structure of chemical bond and interatomic interaction in АIIВV semiconductors. A procedure has been developed and the dissociation energies of nonequivalent chemical bonds in cadmium and zinc antimonides have been calculated as a function of interatomic distances and atomic characteristics of the starting components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. B. Lazarev, V. Ya. Shevchenko, Ya. Kh. Grinberg, and V. V. Sobolev, AIIBVSemiconductors (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  2. S. F. Marenkin and V. M. Trukhan, Zinc and Cadmium Phosphides and Arsenides (Minsk, 2010) [in Russian].

    Google Scholar 

  3. R. G. Chai, Z. Lou, and G. Z. Shen, J. Mater. Chem. 7, 4581. https://doi.org/10.1039/c8tc06383d

  4. B. Q. Zhou, C. Sun, X. Wang, Z. L. Bu, et al., ACS Appl. Mater. Interfaces 11, 27098 (2019). https://doi.org/10.1021/acsami.9b10042

    Article  CAS  PubMed  Google Scholar 

  5. V. M. Trukhan, A. D. Izotov, and T. V. Shoukavaya, Inorg. Mater 50, 868 (2014). https://doi.org/10.1134/S0020168514090143

    Article  CAS  Google Scholar 

  6. A. Fischer, E.-W. Scheidt, W. Scherer, et al., Phys. Rev. B 91, 224309 (2015). https://doi.org/10.1103/PhysRevB.91.224309

    Article  CAS  Google Scholar 

  7. P. Hermet, M. M. Koza, C. Ritter, et al., RSC Adv. 5, 87118 (2015). https://doi.org/10.1039/c5ra16956a

    Article  CAS  Google Scholar 

  8. A. Fischer, D. Eklof, D. E. Benson, Y. Wu, et al., Inorg. Chem. 53, 8691 (2014). https://doi.org/10.1021/ic501308q

    Article  CAS  PubMed  Google Scholar 

  9. P. A. Popov, E. A. Oleinik, V. M. Trukhan, et al., Inorg. Mater. 54, 237 (2018). https://doi.org/10.1134/S0020168518030123

    Article  CAS  Google Scholar 

  10. V. M. Trukhan, S. F. Marenkin, and T. V. Shoukavaya, Crystallogr. Rep. 59, 53 (2014). https://doi.org/10.1134/S1063774514010180

    Article  CAS  Google Scholar 

  11. S. F. Marenkin, A. D. Izotov, I. V. Fedorchenko, and V. M. Novotortsev, Russ. J. Inorg. Chem. 60, 295 (2015). https://doi.org/10.1134/S0036023615030146

    Article  CAS  Google Scholar 

  12. G. D. Nipan and A. N. Aronov, Russ. J. Inorg. Chem. 64, 1565 (2019). https://doi.org/10.1051/epjconf/201818501018

    Article  CAS  Google Scholar 

  13. R. G. Dzhamamedov, T. R. Arslanov, A. Yu. Mollaev, and A. V. Kochura, J. Alloys Compd. 699, 1104 (2017). https://doi.org/10.1016/j.jallcom.2017.01.014

    Article  CAS  Google Scholar 

  14. K. Kim and M. Kaviany, Phys. Rev. B 94, 155203 (2016). https://doi.org/10.1103/PhysRevB.94.155203

    Article  CAS  Google Scholar 

  15. V. I. Psarev, Zh. Fiz. Khim. 77, 1055 (1997).

    Google Scholar 

  16. A. A. Ashcheulov, N. K. Voronka, S. F. Marenkin, and I. M. Rarenko, Neorg. Mater. 32, 1049 (1996).

    Google Scholar 

  17. A. B. Mekhiya, A. A. Kazakov, L. N. Oveshnikov, et al., Semiconductors 53, 1439 (2019). https://doi.org/10.1134/S1063782619110137

    Article  CAS  Google Scholar 

  18. S. F. Marenkin, O. A. Novodvorsky, A. V. Shorokhova, et al., Inorg. Mater. 50, 897 (2014). https://doi.org/10.1134/S0020168514090076

    Article  CAS  Google Scholar 

  19. V. M. Trukhan, L. E. Soshnikov, S. F. Marenkin, and T. V. Haliakevich, Inorg. Mater. 41, 901 (2005). https://doi.org/10.1007/s10789-005-0233-7

    Article  CAS  Google Scholar 

  20. E. V. Prikhod’ko, Izv. Vyssh. Uchebn. Zaved. Chern. Metall., No. 2, 1 (1991).

    Google Scholar 

  21. O. N. Manik, T. O. Manik, and V. R. Bilinsky-Slotylo, Thermoelectricity, No. 5, 57 (2016).

  22. O. N. Manik, T. O. Manik, and V. R. Bilinsky-Slotylo, Termoelektrichestvo, No. 4, 33 (2018).

  23. D. Benson, O. F. Sankey, and U. Haeussermann, Phys. Rev. B 84, 125211 (2011). https://doi.org/10.1103/PhysRevB.84.125211

    Article  CAS  Google Scholar 

  24. S. Y. Wang, J. Yang, L. H. Wu, et al., Chem. Mater. 27, 1071 (2015). https://doi.org/10.1021/cm504398d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Manyk.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashcheulov, A.A., Manyk, O.N., Manyk, T.O. et al. Theoretical Models of Chemical Bond in Molten Binary Cadmium and Zinc Antimonides in AIIBV Semiconductors. Russ. J. Inorg. Chem. 65, 1360–1365 (2020). https://doi.org/10.1134/S0036023620090028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090028

Keywords:

Navigation