Skip to main content
Log in

Specifics of Phase Equilibria Studies in the NH4H2PO4–(NH4)2HPO4–(NH4)2SO4–NH4Cl–H2O at 25°C System by the Optimized Sections Method

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phase equilibria in the NH4H2PO4–(NH4)2HPO4–(NH4)2SO4–NH4Cl–H2O five-component water–salt system and in its boundary systems have been studied at 25°С by an optimized sections method. The efficiency of the algorithm for predicting the compositions of eutonic solutions in the system has been shown. The methodology of experimental design and its implementation in studies of in-, mono-, di-, and invariant equilibria by the optimized sections method is described. The system under study is a simple eutonic type; its eutonic solution is saturated with the initial salt components. Monovariant equilibrium lines and salt cocrystallization surfaces have been studied. Experimental data have been used to plot the phase diagram of the system and its projection on the salt base. The boundaries of areas where one, two, three, or four salts crystallize together have been designated on the salt projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Y.-Y. Gao, X.-P. Li, X.-F. He, and S.-H. Sang, J. Chem. Eng. Data 63, 4497 (2018). https://doi.org/10.1021/acs.jced.8b00596

    Article  CAS  Google Scholar 

  2. X. Yu, Y. Zeng, S. Guo, et al., J. Chem. Eng. Data 61, 1246 (2016). https://doi.org/10.1021/acs.jced.5b00888

    Article  CAS  Google Scholar 

  3. R. Wang and Y. Zeng, J. Chem. Eng. Data 59, 903 (2014). https://doi.org/10.1021/je4010867

    Article  CAS  Google Scholar 

  4. J. Cao, Y. Ren, Q. Zhu, et al., J. Chem. Eng. Data 64, 1209 (2019). https://doi.org/10.1021/acs.jced.8b01110

    Article  CAS  Google Scholar 

  5. M. Ren, Y. Dang, D. Fei, et al., J. Chem. Eng. Data 63, 1435 (2018). https://doi.org/10.1021/acs.jced.7b01015

    Article  CAS  Google Scholar 

  6. Y. Zhang, H. Xu, Y. Zhang, et al., J. Chem. Eng. Data 58, 1050 (2013). https://doi.org/10.1021/je400049m

    Article  CAS  Google Scholar 

  7. A. D. Gordenchuk and O. S. Kudryashova, Russ. J. Inorg. Chem. 62, 1099 (2017). https://doi.org/10.7868/S0044457X17080128

    Article  CAS  Google Scholar 

  8. O. S. Kudryashova, K. R. Matveeva, N. A. Babchenko, and I. S. Glushankova, Bashkir. Khim. Zh. 19 (3), 29 (2012).

    CAS  Google Scholar 

  9. A. M. Elokhov, L. M. Lukmanova, and O. S. Kudryashova, Zh. Fiz. Khim. 93, 358 (2019).

    Google Scholar 

  10. A. M. Elokhov, Y. R. Subbotina, and O. S. Kudryashova, Russ. J. Inorg. Chem. 63, 1092 (2018). https://doi.org/10.1134/S0044457X18080056

    Article  CAS  Google Scholar 

  11. S. A. Mazunin and V. L. Chechulin, Russ. J. Appl. Chem. 83, 1690 (2010). https://doi.org/10.1134/S1070427210090375

    Article  CAS  Google Scholar 

  12. S. A. Mazunin, V. A. Panasenko, and M. P. Zubarev, Vestn. Permsk. Univ., Ser. Khim. 2 (2), 19 (2011).

    Google Scholar 

  13. E. F. Zhuravlev and A. D. Sheveleva, Zh. Neorg. Khim. 5, 2630 (1960).

    CAS  Google Scholar 

  14. O. S. Kudryashova and A. M. Elokhov, Vestn. Permsk. Univ., Ser. Khim. 9, 320 (2019). https://doi.org/10.17072/2223-1838-2019-4-320-330

    Article  Google Scholar 

  15. K. K. Il’in and D. G. Cherkasov, Izv. Saratovsk. Univ., Ser. Khim. Biol. Ekol. 8, 20 2008.

    Google Scholar 

  16. O. S. Kudryashova, A. V. Kataev, and L. N. Malinina, Russ. J. Inorg. Chem. 60, 355 (2015). https://doi.org/10.7868/S0044457X15030125

    Article  CAS  Google Scholar 

  17. A. D. Stankova, A. M. Elokhov, and D. A. Kataeva, Vestn. Yuzhno-Ural’sk. Univ., Ser. Khim. 10 (3), 2018. https://doi.org/10.14529/chem180304

  18. A. M. Elokhov, A. E. Lesnov, O. S. Kudryashova, and S. A. Denisova, Vestn. Permsk. Univ., Ser. Khim. 14, 130 (2014).

    Google Scholar 

  19. N. S. Kistanova, S. A. Mazunin, S. I. Frolova, and A. S. Blinov, Vestn. Tambovsk. Tekhn. Univ. 16, 863 (2010).

    CAS  Google Scholar 

  20. S. A. Chesnokova and N. S. Kistanova, Vestn. Permsk. Univ., Ser. Khim. 6, 55 (2012).

    Google Scholar 

  21. A. V. Elsukov, S. A. Mazunin, and O. I. Kolyasnikova, Vestn. Permsk. Univ., Ser. Khim. 18, 39 (2015).

    Google Scholar 

  22. S. A. Mazunin, M. N. Noskov, and A. V. Elsukov, Russ. J. Inorg. Chem. 62, 539 (2017). https://doi.org/10.1134/S0036023617050163

    Article  CAS  Google Scholar 

  23. V. B. Kogan, S. K. Ogorodnikov, and V. V. Kafarov, The Solubility Handbook (Izd–vo AN SSSR, 1962), Vol. 3, Book 2 [in Russian].

  24. The Reference Book on Solubility in Salt Systems, Vol. 1: Three-Component Systems, Ed. by A. B. Zdanovskii et al. (GKhI, Leningrad/Moscow, 1953) [in Russian].

  25. S. I. Vol’fkovich, L. E. Berlin, and B. M. Mantsev, Zh. Prikl. Khim. 5, 1 (1932).

    Google Scholar 

  26. N. B. Voskoboinikov, Zh. Neorg. Khim. 27, 2634 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kistanova.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistanova, N.S., Mazunin, S.A. Specifics of Phase Equilibria Studies in the NH4H2PO4–(NH4)2HPO4–(NH4)2SO4–NH4Cl–H2O at 25°C System by the Optimized Sections Method. Russ. J. Inorg. Chem. 65, 1390–1397 (2020). https://doi.org/10.1134/S0036023620090077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090077

Keywords:

Navigation