Skip to main content
Log in

Low-Viscosity Marine Fuel Based on Heavy Diesel Fractions of Secondary Origin: Problems and Solutions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Optimal formulations of low-viscosity marine fuel (LMF) involving heavy diesel fractions of secondary origin and containing cold flow improvers and antioxidants have been found by mathematical modeling using the pour point, sulfur content, and density as critical parameters. The experimentally obtained characteristics of laboratory LMF samples prepared according to the calculated formulations correlate well with theoretical data and comply with the requirements of regulatory documents. The possibility of involving heavy distillates, produced by Angarsk Petrochemical Company, in LMF is shown. The antioxidant Kerobit TP 26 P is proposed as a stabilizer in the production of LMF composed of a heavier diesel fraction from the atmospheric column of the GK-3 unit and the atmospheric–vacuum distillation residue of the hydrogenated product from units for hydrotreating of heavy middle-distillate fractions of primary and secondary oil refining. The effectiveness of the antioxidant has been evaluated in terms of change in total sediment, which is a measure of oxidative stability, as well as by the existent gum content. The EPR technique has proved the occurrence of radical reactions during storage of heavy diesel fractions of secondary origin and the inhibitory effect of Kerobit-TP 26 P on these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Decision of July 16, 2012 No. 54 “On approval of the Unified Commodity Nomenclature for Foreign Economic Activity of the Eurasian Economic Union and the Unified Customs Tariff of the Eurasian Economic Union”.

  2. PIMS—economic and technological system for oil refining modeling—a tool for constructing oil refining process planning models using linear programming (LP) methods to create optimal plans, including evaluating the alternatives of crude oil, intermediate raw materials, raw materials obtained outside the boundaries of the installation, technologies, and products and markets. Aspen PIMS program (Process Industry Modeling System). Available at: https://www.aspentech.com/en/ resources/brochure/aspen-pims-family (accessed 04 April 2019).

REFERENCES

  1. S. V. Budukva, P. M. Eletskii, O. O. Zaikina, et al., Pet. Chem. 59, 941 (2019).

    Article  CAS  Google Scholar 

  2. T. N. Mitusova, M. M. Lobashova, M. A. Ershov, et al., Mir Nefteprod., No. 11, 44 (2018).

  3. T. N. Mitusova, M. M. Lobashova, M. A. Ershov, et al., Neftepererab. Neftekhim., No. 12, 19 (2018).

  4. Zh. N. Artem’eva, I. E. Kuzora, S. G. D’yachkova, and O. V. Starikova, Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol. 9, 328 (2019).

    Google Scholar 

  5. I. E. Kuzora, D. A. Dubrovskii, V. D. Cherepanov, and S. G. D’yachkova, Mir Nefteprod., No. 3, 51 (2016).

  6. Zh. N. Artem’eva, O. V. Starikova, T. Yu. Posel’skaya, et al., in Proceedings of VII All-Russia Scientific and Practical Conference with International Participation. Prospects for the Development of Technology for Processing Hydrocarbon, Plant, and Mineral Resources (IRNITU, Irkutsk, 2017), p. 129 [in Russian].

  7. Zh. N. Artem’eva, S. G. D’yachkova, I. E. Kuzora, and O. V. Starikova, in Proceedings of XII All-Russia Scientific and Technical Conference “Current Problems of the Development of the Oil and Gas Complex of Russia: Book of Abstracts (Moscow, 2018), p. 199 [in Russian].

  8. Zh. N. Artem’eva, I. E. Kuzora, and S. G. D’yachkova, in Proceedings of Conference on the Demanding Problems of the Petroleum Refining and Petrochemical Complex (Moscow, 2018), p. 57 [in Russian].

  9. A. A. Ganina, I. E. Kuzora, S. G. D’yachkova, et al., Mir Nefteprod., No. 12, 4 (2018).

  10. K. G. Aleksanyan, O. A. Stokolos, E. V. Solodova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 61 (9–10), 120 (2018).

    Article  Google Scholar 

  11. S. V. Kotov, B. Yu. Smirnov, and I. N. Kankaeva, Vestn. Perm. Nats. Issled. Politekh. Univ., Khim. Tekhnol. Biotekhnol., No. 2, 71 (2018).

  12. N. K. Kondrasheva, Chem. Technol. Fuels Oils 2, 13 (2017).

    Google Scholar 

  13. N. K. Kondrasheva, Pet. Chem. 53, 341 (2013).

    Article  CAS  Google Scholar 

  14. N. K. Kondrasheva, Neftegaz. Delo, No. 1, 40 (2007).

    Google Scholar 

  15. Zh. N. Artem’eva, S. G. D’yachkova, I. E. Kuzora, and M. A. Lonin, Neftepererab. Neftekhim., No. 9, 35 (2019).

  16. G. Yu. Kolchina, R. F. Tukhvatullin, E. R. Babaev, and E. M. Movsumzade, NefteGazoKhimiya, No. 1, 10 (2017).

    Google Scholar 

  17. V. L. Beloborodov, S. E. Zurabyan, A. P. Luzin, and N. A. Tyukavkina, Organic Chemistry: Book 1, Ed. by N. A. Tyukavkina (Drofa, Moscow, 2003) [in Russian].

    Google Scholar 

  18. L. Lespade and S. Bercion, Free Radical Res. 46, 346 (2012).

    Article  CAS  Google Scholar 

  19. Catalysis by Metal Complexes, vol. 21: Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Ed. by A. E. Shilov and G. B. Shul’pin, (Springer, New York, 2001).

    Google Scholar 

  20. O. Yu. Poletaeva, Neftepererab. Neftekhim., No. 4, 41 (2014).

  21. A. O. Buza, in World Science: Problems and Innovations: Proceedings of XV International Scientific and Practical Conference, in four parts (Nauka i Prosveshchenie, Pensa, 2017), p. 48 [in Russian].

  22. R. Z. Magaril, Theoretical Foundations of Chemical Processes of Oil Refining (Universitet, Moscow, 2010) [in Russian].

    Google Scholar 

  23. Crude Oil Emulsions: Composition Stability and Characterization, Ed. by M. El-Sayed Abdel-Raouf (InTech, Rijeka, 2012).

    Google Scholar 

  24. T. R. Porter, W. Kaminsky, and J. M. Mayer, J. Org. Chem. 79, 9451 (2014).

    Article  CAS  Google Scholar 

  25. Nonhebel, D. and Walton, J., Free-Radical Chemistry: Structure and Mechanism (Cambridge Univ. Press, Cambridge, 1974).

    Google Scholar 

  26. Wertz, I. and Bolton, J., Electron Spin Resonance (McGraw-Hill, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zh. N. Artemeva, S. G. Dyachkova or T. I. Vakulskaya.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemeva, Z.N., Dyachkova, S.G., Kuzora, I.E. et al. Low-Viscosity Marine Fuel Based on Heavy Diesel Fractions of Secondary Origin: Problems and Solutions. Pet. Chem. 60, 1100–1107 (2020). https://doi.org/10.1134/S0965544120090030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120090030

Keywords:

Navigation