Skip to main content
Log in

Preparation of a Novel Active Fischer–Tropsch Co–Ni Catalyst Derived from Metal-Organic Framework

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a typical metal-organic framework has been employed for preparation of a novel active Fischer–Tropsch Co–Ni catalyst. Co–Ni catalyst was prepared by glycine–MOF combustion method and was heated in a tube furnace (2°C min–1) under air at 750°C for 6 h. Scanning electron micrograph of metal-organic framework shows regularly cubic shaped crystals and they were being deformed into a low density, loose and porous material after it was calcined in the tube furnace. BET surface area and pore volume are 276 m2/g and 0.31 cm3/g respectively. This active catalyst showed selectivity for long-chain hydrocarbons \(\left( {{\text{C}}_{5}^{ + }} \right)\) of ~52% and for short-chain hydrocarbons (C2–C4) 30%. The relatively high activity (TOF of 2.08 s–1 at 340°C) was ascribed to its high porous structure and large pore size of the catalyst which facilitated the diffusion of hydrocarbons. The unique features of this catalyst, including structural tailor ability such as high surface area, porosity, homogeneity and stability enable it to be an active Fischer–Tropsch catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Jiao, Y. Wang, H. L. Jiang, and Q. Xu, Adv. Mater. 30, 37 (2018).

    Article  Google Scholar 

  2. X. Sun, A. I. O. Suarez, M. Meijerink, et al., Nat. Commun. 8, 1680 (2017).

    Article  Google Scholar 

  3. Y. Cui, B. Li, H. He, et al., Acc. Chem. Res. 49, 483 (2016).

    Article  CAS  Google Scholar 

  4. M. B. Majewski, A. W. Peters, M. R. Wasielewski, et al., ACS Energy Lett. 3, 598 (2018).

    Article  CAS  Google Scholar 

  5. L. C. Almeida, F. J. Echave, O. Sanz, et al., Chem. Eng. J. 167, 536 (2011).

    Article  CAS  Google Scholar 

  6. A. N. Pour, M. R. Housaindokht, J. Zarkesh, and S. F. Tayyari, J. Ind. Eng. Chem. 16, 1025 (2010).

    Article  Google Scholar 

  7. X. Yan, Q. Huang, B. Li, et al., J. Ind. Eng. Chem. 19, 561 (2013).

    Article  CAS  Google Scholar 

  8. H. Janani, A. R. Rezvani, G. H. Grivani, and A. A. Mirzaei, J. Inorg. Organomet. Polym. Mater. 25, 1169 (2015).

    Article  CAS  Google Scholar 

  9. B. An, K. Cheng, C. Wang, et al., ACS Catal. 6, 3610 (2016).

    Article  CAS  Google Scholar 

  10. B. Qiu, C. Yang, W. Guo, et al., J. Mater. Chem. A. 5, 8081 (2017).

    Article  CAS  Google Scholar 

  11. Y. Wang, J. Zhu, L. Zhang, et al., Mater. Lett. 60, 1767 (2006).

    Article  CAS  Google Scholar 

  12. M. A. Vannice and R. L. Garten, J. Catal. 66, 242 (1980).

    Article  CAS  Google Scholar 

  13. S. Zhang, Q. Xing, and W. H. Sun, RSC Adv. 6, 72 170 (2016).

  14. P. Ciambelli, S. Cimino, S. De Rossi, et al., Appl. Catal., B. 24, 243 (2000).

    Article  CAS  Google Scholar 

  15. Z. Wang, C. Wang, S. Chen, and Y. Liu, Int. J. Hydrogen Energy 39, 5644 (2014).

    Article  CAS  Google Scholar 

  16. V. P. Santos, T. A. Wezendonk, J. J. D. Jaén, et al., Nat. Commun. 6, 6451 (2015).

    Article  CAS  Google Scholar 

  17. J. Ye, S. Haiquan, B. Fenghua, et al., Appl. Organometal. Chem. 23, 86 (2009).

    Article  CAS  Google Scholar 

  18. Z. Shanghong, D. Dongping, B. Fenghua, and S. Haiquan, J. Rare Earth. 29, 349 (2011).

  19. T. Fu, R. Liu, J. Lv, and Z. Li, Fuel Process. Technol. 122, 49 (2014).

    Article  CAS  Google Scholar 

  20. L. He, F. Weniger, H. Neumann, and M. Beller, Angew. Chem. Int. Ed. 55, 12 582 (2016).

    Article  Google Scholar 

  21. Z. Yang, S. Guo, X. Pan, et al., Energy Environ. Sci. 4, 4500 (2011).

    Article  CAS  Google Scholar 

  22. Y. F. Yang, L. T. Jia, B. Hou, et al., J. Phys. Chem. C 118, 268 (2014).

    Article  CAS  Google Scholar 

  23. H. J. Schulte, B. Graf, W. Xia, and M. Muhler, Chem. Cat. Chem. 4, 350 (2012).

    CAS  Google Scholar 

Download references

Funding

Funding of this work by the University of Sistan and Baluchestan is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Halimeh Janani, ORCID: http://orcid.org/0000-0003-2750-7074

Alireza Rezvani, ORCID: http://orcid.org/0000-0003-2681-9906

Ali Akbar Mirzaei, ORCID: http://orcid.org/0000-0002-1753-2340

Corresponding authors

Correspondence to H. Janani, A. Rezvani or A. A. Mirzaei.

Ethics declarations

Authors declare that they have no conflict of interest.

Supplementary material

11494_2020_8379_MOESM1_ESM.jpg

Fig. S1: Schematic representation of the reactor in a flow diagram used: 1- Gas cylinders, 2- Pressure regulators, 3- Needle valves, 4- Valves, 5- Mass Flow Controllers (MFC), 6- Digital pressure controllers, 7- Pressure gauges, 8- Non return valves, 9- Ball valves, 10- Tubular furnace, 11- Temperature indicators, 12- Tubular reactor and catalyst bed, 13- Condenser, 14- Trap, 15- Air pump, 16- Silica gel column, 17- Gas Chromatograph (GC), 18- Mixing chamber, 19- BPR: Back Pressure Regulator (Electronically type), 20- CP (Control panel)

Fig. S2: FT-IR spectrum of MOF

Fig.S3: Thermoanalytical curve (TGA) of MOF

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janani, H., Rezvani, A. & Mirzaei, A.A. Preparation of a Novel Active Fischer–Tropsch Co–Ni Catalyst Derived from Metal-Organic Framework. Pet. Chem. 60, 1059–1065 (2020). https://doi.org/10.1134/S0965544120090121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120090121

Keywords:

Navigation