Skip to main content
Log in

Microwave-Assisted Lignin Conversion to Liquid Products in the Presence of Iron and Nickel

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Results of the microwave-assisted catalytic pyrolysis of lignin have been described. It has been shown that, in a medium of an inert gas (argon) and a hydrogen–argon mixture, the following maximum liquid yield is achieved: 33 and 36% for iron-containing catalyst samples and 45% for nickel-containing catalysts. The gas chromatography–mass spectrometry (GC/MS) method has been used to determine the qualitative composition of the liquid product fraction, which is mostly represented by phenol and anisol, i.e., derivatives of the monomeric units of lignin (coumaryl and coniferyl alcohols). Probable sites of interaction of the functional groups of the lignin surface with nanosized particles of nickel- and iron-containing catalysts have been studied by IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. M. Rowell, R. Pettersen, J. S. Han, et al., Handbook of Wood Chemistry and Wood Composites, Ed. by R. M. Rowell (CRC, Boca Raton, 2005), p. 9.

    Google Scholar 

  2. W.-J. Liu, H. Jiang, and H.-Q. Yu, Green Chem. 17, 4888 (2015).

    Article  CAS  Google Scholar 

  3. M. L. Rabinovich, in Proceedings of the 2nd Nordic Wood Biorefinery Conference (Helsinki, 2009), p. 111.

  4. C. N. Hamelink, G. van Hooijdonk, and A. P. C. Faaij, Biomass Bioenergy 28, 384 (2005).

    Article  CAS  Google Scholar 

  5. D. M. Alonso, C. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. C.-H. Zhou, X. Xia, C.-X. Lin, et al., Chem. Soc. Rev. 40, 5588 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. D. M. Alonso, J. Q. Bond, and J. A. Dumesic, Green Chem. 12, 1493 (2010).

    Article  CAS  Google Scholar 

  8. J. Zakzeski, P. C. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, Chem. Rev. 110, 3552 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. M. Brebu and C. Vasile, Cellul. Chem. Technol. 44, 353 (2010).

    CAS  Google Scholar 

  10. P. K. Swain, L. M. Das, and S. N. Naik, Renew. Sust. Energy Rev. 15, 4917 (2011).

    Article  CAS  Google Scholar 

  11. P. McKendry, Bioresour. Technol. 83, 47 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. M. Hamaguchi, M. Cardoso, and E. Vakkilainen, Energies 5, 2288 (2012).

    Article  CAS  Google Scholar 

  13. J. Zakzeski and B. Weckhuysen, ChemSusChem 4, 369 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. H. D. Willauer, J. G. Huddleston, M. Li, and R. D. Rogers, J. Chromatogr., B: Biomed. Appl. 743, 127 (2000).

    CAS  Google Scholar 

  15. S. R. Collinson and W. Thielemans, Coord. Chem. Rev. 254, 1854 (2010).

    Article  CAS  Google Scholar 

  16. R. M. Ravenelle, J. R. Copeland, W. G. Kim, et al., ACS Catal. 1, 552 (2011).

    Article  CAS  Google Scholar 

  17. R. M. Ravenelle, J. R. Copeland, A. H. van Pelt, et al., Top. Catal. 55, 162 (2012).

    Article  CAS  Google Scholar 

  18. R. Y. Nsimba, C. A. Mullen, N. M. West, and A. A. Boateng, ACS Sust. Chem. Eng. 1, 260 (2013).

    CAS  Google Scholar 

  19. P. R. Patwardhan, R. C. Brown, and B. H. Shanks, ChemSusChem 4, 1629 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. R. Lanza, D. D. Nogare, and P. Canu, Ind. Eng. Chem. Res. 48, 1391 (2009).

    Article  CAS  Google Scholar 

  21. X. L. Zhuang, H. X. Zhang, J. Z. Yang, and H. Y. Qi, Bioresour. Technol 79, 63 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. D. Lv, M. Xu, X. Liu, et al., Fuel Process. Technol. 91, 903 (2010).

    Article  CAS  Google Scholar 

  23. X. H. Hao, L. J. Guo, X. Mao, et al., Int. J. Hydrogen Energy 28, 55 (2003).

    Article  CAS  Google Scholar 

  24. A. J. Byrd, K. K. Pant, and R. B. Gupta, Ind. Eng. Chem. Res. 46, 3574 (2007).

    Article  CAS  Google Scholar 

  25. A. J. Byrd, K. K. Pant, and R. B. Gupta, Energy Fuels 21, 3541 (2007).

    Article  CAS  Google Scholar 

  26. W. Yunpu, D. Leilei, F. Liangliang, et al., J. Anal. Appl. Pyrolys. 119, 104 (2016).

    Article  CAS  Google Scholar 

  27. J. Xu, J. Jiang, C. Hse, and T. F. Shupe, Green Chem. 14, 2821 (2012).

    Article  CAS  Google Scholar 

  28. J. Xie, J. Qi, C. Hse, and T. F. Shupe, J. For. Res. 26, 261 (2015).

    Article  CAS  Google Scholar 

  29. J. Xu, J. Jiang, C. Hse, and T. F. Shupe, Green Chem. 14, 2821 (2012).

    Article  CAS  Google Scholar 

  30. J. Xie, J. Qi, C. Hse, and T. F. Shupe, J. For. Res. 26, 261 (2015).

    Article  CAS  Google Scholar 

  31. H. G. Kim and Y. Park, Ind. Eng. Chem. Res. 52, 10 059 (2013).

    Article  CAS  Google Scholar 

  32. J. Y. Kim, J. H. Lee, J. Park, et al., J. Anal. Appl. Pyrolys. 114, 273 (2015).

    Article  CAS  Google Scholar 

  33. Q. Bu, H. Lei, L. Wang, et al., Bioresour. Technol. 162, 142 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. L. Fan, P. Chen, Y. Zhang, et al., Bioresour. Technol. 225, 199 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. M. V. Tsodikov, G. I. Konstantinov, A. V. Chistyakov, et al., Chem. Eng. J. 292, 315 (2016).

    Article  CAS  Google Scholar 

  36. F. S. Wen, F. Zhang, and Z. Y. Liu, J. Phys. Chem. C 115 (29), 14 025 (2011).

    Article  CAS  Google Scholar 

  37. G. V. Rodicheva, V. P. Orlovskii, N. M. Romanova, et al., Russ. J. Inorg. Chem. 41, 728 (1996).

    Google Scholar 

  38. M. V. Tsodikov, M. A. Perederii, M. S. Karaseva, et al., Nauk. Tekhnol., Nos. 6–7, 55 (2007).

    Google Scholar 

  39. M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, et al., J. Nanoparticle Res. 20 (3), 86 (2018).

    Article  CAS  Google Scholar 

  40. M. V. Tsodikov, M. A. Perederii, M. S. Karaseva, et al., Nauk. Tekhnol., Nos. 6–7, 55 (2007).

    Google Scholar 

  41. I. G. Sudakova and N. B. Rudenko, Zh. Sib. Fed. Univ., Khim. 201, 499 (2015).

    Google Scholar 

  42. Thermochemical conversion of biomass to liquid fuels and chemicals, Ed. by M. Crocker (Royal Society of Chemistry, Cambridge, 2010).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-01096mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Arapova.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapova, O.V., Chistyakov, A.V., Palankoev, T.A. et al. Microwave-Assisted Lignin Conversion to Liquid Products in the Presence of Iron and Nickel. Pet. Chem. 60, 1019–1025 (2020). https://doi.org/10.1134/S0965544120090029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120090029

Keywords:

Navigation